Differential Geometry/Dynamical Systems

On the kinetic equations of a lithium-ion battery model

Sur les équations cinétiques d'un modèle de la batterie lithium-ion

Anania Gîrban ${ }^{\text {a }}$, Gabriel Gîrban ${ }^{\text {b }}$
a "Politehnica" University of Timişoara, Department of Mathematics, Piaţa Victoriei Nr. 2, 300006-Timișoara, Romania
b "Politehnica" University of Timişoara, Computer Science Department, V. Parvan, Nr. 2, 300223-Timişoara, Romania

ARTICLE INFO

Article history:

Received 18 July 2012
Accepted after revision 8 October 2012
Available online 22 October 2012
Presented by the Editorial Board

Abstract

In this Note we provide a Hamilton-Poisson realization of the system obtained from the kinetic equations of a well known lithium-ion battery model, explicitly integrate the Poincaré compactification of this system and give a Lax formulation. © 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. R É S U M É

Dans cette Note, on donne une réalisation Hamilton-Poisson d'un système obtenu à partir des équations cinétiques d'un modèle bien connu pour la batterie lithium-ion, on intègre explicitement la compactification de Poincaré de ce système et on donne une formulation de Lax.
© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Hamilton-Poisson realizations of a battery model

In this Note, we are taking as a reference the kinetic equations describing the transport of active species (electrons and ions) based on charge and mass conservation constraints in case of lithium-ion batteries [2,3]. After some transformations in which we consider $q=u x+v t, x=\frac{1}{n_{L i}}, y=n_{L i}^{\prime}, z=\Phi$ (with u and v being real constants while $n_{L i}$ and Φ are defined in [3] as molar concentration and electric potential), one can obtain the system:

$$
\left\{\begin{array}{l}
\dot{x}=-x^{2} y \tag{1}\\
\dot{y}=-\frac{x^{2} y-b x^{2} y z+b d x y^{2}}{b d}, \\
\dot{z}=\frac{x y-b x y z}{b}
\end{array}\right.
$$

where $b, d \in \mathbb{R}^{*}$ are real constants.
The following theorem gives a Hamilton-Poisson realization of the system (1):

Theorem 1.1. The dynamics (1) has the following Hamilton-Poisson realization:

$$
\left((0, \infty) \times \mathbb{R}^{2}, \Pi_{C}, H\right)
$$

[^0]where
\[

\Pi_{C}(x, y, z)=\frac{1}{b d}\left[$$
\begin{array}{ccc}
0 & -b x^{3} y & 0 \\
b x^{3} y & 0 & x^{2} y(b z-1) \\
0 & -x^{2} y(b z-1) & 0
\end{array}
$$\right]
\]

is the Poisson structure generated by the smooth function $C(x, y, z):=\frac{b z-1}{x}$, and the Hamiltonian $H \in C^{\infty}\left((0, \infty) \times \mathbb{R}^{2}, \mathbb{R}\right)$ is given by $H(x, y, z):=\frac{d y}{x}+z$.

The Poisson structure generated by the smooth function C, is the Poisson structure generated by the Poisson bracket $\{f, g\}:=$ $\nabla C \cdot(\nabla f \times \nabla g)$, for any smooth functions $f, g \in C^{\infty}\left((0, \infty) \times \mathbb{R}^{2}, \mathbb{R}\right)$.

Proof. It is not hard to see that $\Pi_{C}(x, y, z) \cdot \nabla H(x, y, z)=\left[\begin{array}{l}\dot{x} \\ \dot{y} \\ \dot{z}\end{array}\right]$, as required.
Let us now give other Hamilton-Poisson realizations of the system (1).

Proposition 1.1. The dynamics (1) admits a family of Hamilton-Poisson realizations parameterized by the group SL(2, $\mathbb{R})$. More exactly, $\left((0, \infty) \times \mathbb{R}^{2},\{\cdot \cdot \cdot\}_{\alpha, \beta}, H_{\gamma, \delta}\right)$ is a Hamilton-Poisson realization of the dynamics (1) where the bracket $\{\cdot, \cdot\}_{\alpha, \beta}$ is defined by

$$
\{f, g\}_{\alpha, \beta}:=\nabla C_{\alpha, \beta} \cdot(\nabla f \times \nabla g)
$$

for any $f, g \in C^{\infty}\left((0, \infty) \times \mathbb{R}^{2}, \mathbb{R}\right)$, and the functions $C_{\alpha, \beta}$ and $H_{\gamma, \delta}$ are given by:

$$
C_{\alpha, \beta}(x, y, z)=\frac{\alpha x z+d \alpha y+b \beta z-\beta}{x}, \quad H_{\gamma, \delta}(x, y, z)=\frac{\gamma x z+d \gamma y+b \delta z-\delta}{x}
$$

respectively, the matrix of coefficients $\alpha, \beta, \gamma, \delta$ is $\left[\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right] \in \operatorname{SL}(2, \mathbb{R})$.

Proof. Since the matrix formulation of the Poisson bracket $\{\cdot, \cdot\}_{\alpha, \beta}$ is given in coordinates by:

$$
\Pi_{\alpha, \beta}(x, y, z)=\frac{1}{b d}\left[\begin{array}{ccc}
0 & x^{3} y(\alpha x+b \beta) & -d\left(\alpha x^{3} y\right) \\
-x^{3} y(\alpha x+b \beta) & 0 & -x^{2} y(d \alpha y-\beta+b \beta z) \\
d\left(\alpha x^{3} y\right) & x^{2} y(d \alpha y-\beta+b \beta z) & 0
\end{array}\right]
$$

we obtain the conclusion directly.

For details on Poisson geometry and Hamiltonian dynamics see e.g. [4,5].

2. The behavior on the sphere at infinity

Now we explicitly integrate on the sphere the Poincaré compactification of the system (1) at infinity. Recall that using the Poincare compactification of \mathbb{R}^{3}, the infinity of \mathbb{R}^{3} is represented by the sphere \mathbb{S}^{2} - the equator of the unit sphere \mathbb{S}^{3} in \mathbb{R}^{4}. For details regarding the Poincaré compactification of polynomial vector fields in \mathbb{R}^{3} see [1].

With the notations from [1] we put the system (1) in the following form: $\dot{x}=P^{1}(x, y, z), \dot{y}=P^{2}(x, y, z), \dot{z}=P^{3}(x, y, z)$ with $P^{1}(x, y, z)=-x^{2} y, P^{2}(x, y, z)=-\frac{x^{2} y-b x^{2} y z+b d x y^{2}}{b d}, P^{3}(x, y, z)=\frac{x y-b x y z}{b}$.

We study the Poincare compactification of the system (1) in the local charts U_{i} and $V_{i}, i \in\{1,2,3\}$, of the manifold \mathbb{S}^{3}.
The Poincaré compactification $\left(p(X)\right.$ in the notations from [1]) of the system (1) in the local charts U_{1}, U_{2} and respectively U_{3} is given in the corresponding local coordinates by

$$
\left(U_{1}\right)\left\{\begin{array}{l}
\dot{z}_{1}=\frac{z_{1}\left(b z_{2}-z_{3}\right)}{b d} \tag{2}\\
\dot{z}_{2}=\frac{z_{1} z_{3}^{2}}{b} \\
\dot{z}_{3}=z_{1} z_{3}^{2}
\end{array}, \quad\left(U_{2}\right)\left\{\begin{array}{l}
\dot{z}_{1}=\frac{z_{1}^{3}\left(-b z_{2}+z_{3}\right)}{b d} \\
\dot{z}_{2}=\frac{z_{1}\left(-b z_{1} z_{2}^{2}+z_{1} z_{2} z_{3}+d z_{3}^{2}\right)}{b d} \\
\dot{z}_{3}=\frac{z_{1} z_{3}\left(-b z_{1} z_{2}+b d z_{3}+z_{1} z_{3}\right)}{b d}
\end{array}, \quad\left(U_{3}\right)\left\{\begin{array}{l}
\dot{z}_{1}=-\frac{z_{1}^{2} z_{2} z_{3}^{2}}{b} \\
\dot{z}_{2}=\frac{z_{1} z_{2}\left(b z_{1}-z_{1} z_{3}-d z_{2} z_{3}^{2}\right)}{b d} . \\
\dot{z}_{3}=\frac{z_{1} z_{2}\left(b-z_{3}\right) z_{3}^{2}}{b}
\end{array}\right.\right.\right.
$$

The flow of the system (2) on the local chart V_{1}, V_{2} and respectively V_{3} is the same as the flow on the local chart U_{1}, U_{2} and respectively U_{3} reversing the time. It comes from the Poincare compactification of the system in the local chart V_{1}, V_{2} and respectively V_{3}, because the compactified vector field $p(X)$ in the local chart V_{1}, V_{2} and respectively V_{3} is the vector field $-p(X)$ in U_{1}, U_{2} and respectively U_{3}.

Fig. 1. Phase portrait of the systems (3) on the local charts U_{1}, U_{2} and U_{3}, respectively, on the infinity sphere.
Fig. 1. Portrait de phase des systèmes (3) sur les cartes locales U_{1}, U_{2} et U_{3}, respectivement, sur la sphère infinie.

The points on the sphere \mathbb{S}^{2} at infinity are characterized by $z_{3}=0$. As the plane $z_{1} z_{2}$ is invariant under the flow of the system (2), the compactified system (1) on the local charts $U_{i}(i \in\{1,2,3\})$ on the infinity sphere is reduced to integrable systems and the solutions are given by:

$$
\left(U_{1}\right)\left\{\begin{array}{l}
z_{1}(t)=k_{2} e^{\frac{t k_{1}}{d}} \tag{3}\\
z_{2}(t)=k_{1}
\end{array}, \quad\left(U_{2}\right)\left\{\begin{array} { l }
{ z _ { 1 } (t) = \sqrt [3] { \frac { d } { 3 (t k _ { 1 } - d k _ { 2 }) } } } \\
{ z _ { 2 } (t) = \sqrt [3] { \frac { d k _ { 1 } } { 3 (t k _ { 1 } - d k _ { 2 }) } } , }
\end{array} \quad (U _ { 3 }) \left\{\begin{array}{l}
z_{1}(t)=k_{1} \\
z_{2}(t)=k_{2} e^{\frac{t k_{1}^{2}}{d}},
\end{array}\right.\right.\right.
$$

where k_{1}, k_{2} are arbitrary real constants.
The phase portrait on the local charts $U_{i}(i \in\{1,2,3\})$ on the infinity sphere is given in Fig. 1 where the black lines are the equilibrium lines.

3. Lax formulation

In this section we present a Lax formulation of the system (1).
Let us first note that the system (1) restricted to a regular symplectic leaf, gives rise to a symplectic Hamiltonian system that is completely integrable in the sense of Liouville and consequently it has a Lax formulation.

The next proposition shows that the unrestricted system also admits a Lax formulation:
Proposition 3.1. The system (1) can be written in the Lax form $\dot{L}=[L, B]$, where the matrices L and respectively B are given by:

$$
L=\left[\begin{array}{ccc}
0 & \frac{1+b z}{x} & \frac{d y}{x}+z \\
-\frac{1+b z}{x} & 0 & \frac{-i \sqrt{2}}{x} \\
-\frac{d y+x z}{x} & -\frac{-i \sqrt{2}}{x} & 0
\end{array}\right], \quad B=\left[\begin{array}{ccc}
0 & 0 & i \sqrt{2} x y \\
0 & 0 & 0 \\
-i \sqrt{2} x y & 0 & 0
\end{array}\right], \quad i^{2}=-1 .
$$

Acknowledgements

The work of Anania Gîrban was supported by the project "Development and support of multidisciplinary postdoctoral programmes in major technical areas of national strategy of Research - Development - Innovatio" 4D-POSTDOC, contract No. POSDRU/89/1.5/S/52603, project co-funded by the European Social Fund through Sectoral Operational Programme Human Resources Development 2007-2013.

The work of Gabriel Gîrban was supported by the strategic grant POSDRU/88/1.5/S/50783, Project ID50783 (2009), cofinanced by the European Social Fund "Investing in People", within the Sectoral Operational Programme Human Resources Development 2007-2013.

References

[1] C.A. Buzzi, J. Llibre, J.C. Medrado, Periodic orbits for a class of reversible quadratic vector field on \mathbb{R}^{3}, J. Math. Anal. Appl. 335 (2007) $1335-1346$.
[2] M. Doyle, T.F. Fuller, J. Newman, Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell, J. Electrochem. Soc. 140 (6) (1993) 1526.
[3] R.E. Garcia, Y.-M. Chiang, W.C. Carter, P. Limthongkul, C.M. Bishop, Microstructural modeling and design of rechargeable lithium-ion batteries, J. Electrochem. Soc. 152 (1) (2005) A255.
[4] J.E. Marsden, Lectures on Mechanics, London Mathematical Society Lecture Notes Series, vol. 174, Cambridge University Press, 1992.
[5] T.S. Ratiu, R.M. Tudoran, L. Sbano, E. Sousa Dias, G. Terra, A crash course in geometric mechanics, in: Geometric Mechanics and Symmetry: The Peyresq Lectures, in: London Mathematical Society Lecture Notes Series, vol. 306, Cambridge University Press, 2005, pp. 23-156, Chapter II.

[^0]: E-mail addresses: anania.girban@gmail.com (A. Gîrban), gabriel.girban@cs.upt.ro (G. Gîrban).
 1631-073X/\$ - see front matter © 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.crma.2012.10.008

