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In this Note we provide a Hamilton–Poisson realization of the system obtained from
the kinetic equations of a well known lithium-ion battery model, explicitly integrate the
Poincaré compactification of this system and give a Lax formulation.
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r é s u m é

Dans cette Note, on donne une réalisation Hamilton–Poisson d’un système obtenu à partir
des équations cinétiques d’un modèle bien connu pour la batterie lithium-ion, on intègre
explicitement la compactification de Poincaré de ce système et on donne une formulation
de Lax.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Hamilton–Poisson realizations of a battery model

In this Note, we are taking as a reference the kinetic equations describing the transport of active species (electrons and
ions) based on charge and mass conservation constraints in case of lithium-ion batteries [2,3]. After some transformations
in which we consider q = ux + vt , x = 1

nLi
, y = n′

Li , z = Φ (with u and v being real constants while nLi and Φ are defined
in [3] as molar concentration and electric potential), one can obtain the system:⎧⎪⎨

⎪⎩
ẋ = −x2 y,

ẏ = − x2 y−bx2 yz+bdxy2

bd ,

ż = xy−bxyz
b ,

(1)

where b,d ∈R
∗ are real constants.

The following theorem gives a Hamilton–Poisson realization of the system (1):

Theorem 1.1. The dynamics (1) has the following Hamilton–Poisson realization:(
(0,∞) ×R

2,ΠC , H
)
,
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where

ΠC (x, y, z) = 1

bd

⎡
⎣ 0 −bx3 y 0

bx3 y 0 x2 y(bz − 1)

0 −x2 y(bz − 1) 0

⎤
⎦

is the Poisson structure generated by the smooth function C(x, y, z) := bz−1
x , and the Hamiltonian H ∈ C∞((0,∞) ×R

2,R) is given

by H(x, y, z) := dy
x + z.

The Poisson structure generated by the smooth function C , is the Poisson structure generated by the Poisson bracket { f , g} :=
∇C · (∇ f × ∇g), for any smooth functions f , g ∈ C∞((0,∞) ×R

2,R).

Proof. It is not hard to see that ΠC (x, y, z) · ∇H(x, y, z) =
[

ẋ
ẏ
ż

]
, as required. �

Let us now give other Hamilton–Poisson realizations of the system (1).

Proposition 1.1. The dynamics (1) admits a family of Hamilton–Poisson realizations parameterized by the group SL(2,R). More ex-
actly, ((0,∞) ×R

2, {·,·}α,β, Hγ ,δ) is a Hamilton–Poisson realization of the dynamics (1) where the bracket {·,·}α,β is defined by

{ f , g}α,β := ∇Cα,β · (∇ f × ∇g),

for any f , g ∈ C∞((0,∞) ×R
2,R), and the functions Cα,β and Hγ ,δ are given by:

Cα,β(x, y, z) = αxz + dαy + bβz − β

x
, Hγ ,δ(x, y, z) = γ xz + dγ y + bδz − δ

x
,

respectively, the matrix of coefficients α, β , γ , δ is
[ α β

γ δ

] ∈ SL(2,R).

Proof. Since the matrix formulation of the Poisson bracket {·,·}α,β is given in coordinates by:

Πα,β(x, y, z) = 1

bd

⎡
⎣ 0 x3 y(αx + bβ) −d(αx3 y)

−x3 y(αx + bβ) 0 −x2 y(dαy − β + bβz)
d(αx3 y) x2 y(dαy − β + bβz) 0

⎤
⎦ ,

we obtain the conclusion directly. �
For details on Poisson geometry and Hamiltonian dynamics see e.g. [4,5].

2. The behavior on the sphere at infinity

Now we explicitly integrate on the sphere the Poincaré compactification of the system (1) at infinity. Recall that using
the Poincaré compactification of R3, the infinity of R3 is represented by the sphere S

2 – the equator of the unit sphere S
3

in R
4. For details regarding the Poincaré compactification of polynomial vector fields in R

3 see [1].
With the notations from [1] we put the system (1) in the following form: ẋ = P 1(x, y, z), ẏ = P 2(x, y, z), ż = P 3(x, y, z)

with P 1(x, y, z) = −x2 y, P 2(x, y, z) = − x2 y−bx2 yz+bdxy2

bd , P 3(x, y, z) = xy−bxyz
b .

We study the Poincaré compactification of the system (1) in the local charts Ui and V i , i ∈ {1,2,3}, of the manifold S
3.

The Poincaré compactification (p(X) in the notations from [1]) of the system (1) in the local charts U1, U2 and respec-
tively U3 is given in the corresponding local coordinates by

(U1)

⎧⎪⎨
⎪⎩

ż1 = z1(bz2−z3)
bd

ż2 = z1 z2
3

b
ż3 = z1z2

3

, (U2)

⎧⎪⎪⎨
⎪⎪⎩

ż1 = z3
1(−bz2+z3)

bd

ż2 = z1(−bz1z2
2+z1 z2 z3+dz2

3)

bd

ż3 = z1 z3(−bz1z2+bdz3+z1z3)
bd

, (U3)

⎧⎪⎪⎨
⎪⎪⎩

ż1 = − z2
1 z2 z2

3
b

ż2 = z1 z2(bz1−z1 z3−dz2 z2
3)

bd

ż3 = z1 z2(b−z3)z2
3

b

. (2)

The flow of the system (2) on the local chart V 1, V 2 and respectively V 3 is the same as the flow on the local chart U1,
U2 and respectively U3 reversing the time. It comes from the Poincaré compactification of the system in the local chart V 1,
V 2 and respectively V 3, because the compactified vector field p(X) in the local chart V 1, V 2 and respectively V 3 is the
vector field −p(X) in U1, U2 and respectively U3.
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Fig. 1. Phase portrait of the systems (3) on the local charts U1, U2 and U3, respectively, on the infinity sphere.

Fig. 1. Portrait de phase des systèmes (3) sur les cartes locales U1, U2 et U3, respectivement, sur la sphère infinie.

The points on the sphere S
2 at infinity are characterized by z3 = 0. As the plane z1z2 is invariant under the flow of the

system (2), the compactified system (1) on the local charts Ui (i ∈ {1,2,3}) on the infinity sphere is reduced to integrable
systems and the solutions are given by:

(U1)

{
z1(t) = k2e

tk1
d

z2(t) = k1
, (U2)

⎧⎨
⎩

z1(t) = 3
√

d
3(tk1−dk2)

z2(t) = 3
√

dk1
3(tk1−dk2)

, (U3)

{
z1(t) = k1

z2(t) = k2e
tk2

1
d

, (3)

where k1, k2 are arbitrary real constants.
The phase portrait on the local charts Ui (i ∈ {1,2,3}) on the infinity sphere is given in Fig. 1 where the black lines are

the equilibrium lines.

3. Lax formulation

In this section we present a Lax formulation of the system (1).
Let us first note that the system (1) restricted to a regular symplectic leaf, gives rise to a symplectic Hamiltonian system

that is completely integrable in the sense of Liouville and consequently it has a Lax formulation.
The next proposition shows that the unrestricted system also admits a Lax formulation:

Proposition 3.1. The system (1) can be written in the Lax form L̇ = [L, B], where the matrices L and respectively B are given by:

L =
⎡
⎢⎣ 0 1+bz

x
dy
x + z

− 1+bz
x 0 −i

√
2

x

−dy+xz
x −−i

√
2

x 0

⎤
⎥⎦ , B =

⎡
⎣ 0 0 i

√
2xy

0 0 0
−i

√
2xy 0 0

⎤
⎦ , i2 = −1.
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