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In this Note, we study the adiabatic transition probability for a two-level system in the case
of a finite number of avoided crossings. More precisely, we investigate a global change
of bases of a first order differential system with respect to a semiclassical “adiabatic”
parameter (h ↓ 0) and an interaction parameter (ε ↓ 0). We obtain its asymptotic behaviors
by means of an exact WKB method and a microlocal analysis according to the interrelation
of the two parameters.
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r é s u m é

Dans cette Note, nous intéressons à la probabilité de transition adiabatique d’un système
à deux niveaux dans le cas d’un nombre fini de croisements évités. Plus précisément,
nous étudions un changement global des bases d’un système différentiel du premier
ordre par rapport à un paramètre semiclassique “adiabatique” (h ↓ 0) et un paramètre
d’interaction (ε ↓ 0). Nous obtenons les différents comportements asymptotiques au moyen
d’une méthode BKW exacte et une analyse microlocale en fonction de la corrélation entre
les deux paramètres.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider the time-dependent Schrödinger equation:

ih
d

dt
ψ(t) = H(t;ε)ψ(t), where H(t;ε) :=

(
V (t) ε
ε −V (t)

)
, for all t ∈R. (1)

The potential V is a real-valued function on R and ψ(t) = t(ψ1(t),ψ2(t)) ∈ C
2. Here h is a semiclassical “adiabatic” pa-

rameter and ε is an interaction parameter of the gap at avoided crossing. The matrix H(t;ε) has two real eigenvalues
λ±(t;ε) := ±√

V (t)2 + ε2 and the difference of these eigenvalues g(t;ε) := λ+ − λ− � 2ε is strictly positive for all t ∈ R.
The question is to study the transition probability between the energies of system (1), λ±(t;ε). The typical result is

Landau–Zener formula, that is the transition probability is given by P (ε;h) = exp(−πε2

vh ), for V (t) := vt (v > 0), see [13].
From this formula, the probability tends to 1 when ε ↓ 0, while it decays exponentially when h ↓ 0. From the viewpoint
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of the so-called Adiabatic Theorem, the generalization of the Landau–Zener formula with respect to h ↓ 0 for a fixed ε has
been investigated by many authors (see [6] and references given therein), especially in [9] by means of a complex WKB
method for multiple avoided crossings and in [10] by a microlocal theory. Remark that the adiabatic effect (h ↓ 0) and the
interaction effect (ε ↓ 0) play the opposite roles in the transition probability.

In this Note, we want to study the asymptotic behavior of the transition probability when the two parameters h and ε
tend to 0 simultaneously, where the potential V is short range (modulo an additive constant) and it vanishes in a finite
number (� 2) of nondegenerate zeros, i.e., V (tk) = 0 and V ′(tk) �= 0 for k = 1, . . . ,n with n � 2. The Landau–Zener formula
says that the ratio of h and ε2 must be very important. Specifically, there are three cases, as in [1] (see also [11]):

Case 1. (ε,h) ↓ (0,0) and h
ε2 ↓ 0. This regime was treated in [8] when V vanishes at only one point (n = 1), but for more

general Hamiltonians. In Theorem 2.3 we get a small extension of this result in our simpler framework but with several
avoided crossings (n � 2), by using the exact WKB method. This method was developed by C. Gérard and A. Grigis (see [4]).
Note that in [12], the author has treated the case where V has one degenerate zero, the asymptotic behavior obtained
depends strongly on the order of degeneracy.

Case 2. (ε,h) ↓ (0,0) and h
ε2 ∼ C where C is some strictly positive constant. This case was treated by G.-A. Hagedorn. In fact,

he considered a more general setting than Landau–Zener model and his result is a natural extension of the Landau–Zener
formula in the case where one avoided crossing is nondegenerate. See [5, p. 435, formula (1.7)]. The proof of G.-A. Hagedorn
is essentially based on the properties of “parabolic cylinder functions” as in Zener’s paper.

Case 3. (ε,h) ↓ (0,0) and ε2

h ↓ 0. This regime is our main interest in this Note. This case is more involved than the others.
In fact, from the mathematical point of view and more precisely WKB method, the problem of the confluence of turning
points happens when ε2

h ↓ 0. In Theorem 2.6, we show that the asymptotic expansion of the transition probability depends

on the parity of the number of zeros of the potential V and we give a precise expression of Cn(ε;h) the prefactor of πε2

h ,
see (4). Moreover, we derive a kind of a Bohr–Sommerfeld quantization condition when the prefactor Cn(ε;h) vanishes, see
Remark 2.9.

2. Hypotheses and statements

In this section we give the precise assumptions and we state the results. The potential V is smooth, real-valued on R

and satisfies the following assumptions:

(A1) V extends holomorphically in the sector S = {t ∈ C; |Im t| < 〈Re t〉 tanα0}, for some α0 ∈ ]0, π
2 [.

(A2) There exist Er, El in R
∗ and δ > 1 s.t., V (t) =

{
Er+O(|t|−δ ) as Re t→+∞ in S,

El+O(|t|−δ) as Re t→−∞ in S.

Under the analyticity condition (A1) and the boundaries conditions (A2), we define four Jost solutions J r±(t) and J l±(t)

uniquely defined by the asymptotic conditions: J r+(t) ∼ exp[+ i
h

√
E2

r + ε2t]t(− sin θr cos θr) as Re t → +∞ in S and J r−(t) ∼
exp[− i

h

√
E2

r + ε2t]t(cos θr sin θr) as Re t → +∞ in S , where tan 2θr = ε
Er

(0 < θr < π
2 ) and the similar formulas for J l±(t) as

Re t → −∞ in S . The pairs of Jost solutions ( J r+, J r−) and ( J l+, J l−) are orthonormal bases on C
2 for any fixed t .

Definition 2.1. The scattering matrix S is defined as the change of bases of Jost solutions:

(
J l+ J l−

) = (
J r+ J r−

)
S(ε;h), S(ε;h) =

(
s11(ε;h) s12(ε;h)

s21(ε;h) s22(ε;h)

)
.

The matrix S is unitary and independent of t . Then |s11(ε;h)|2 + |s21(ε;h)|2 = 1.

Definition 2.2. The transition probability P (ε;h) is defined by P (ε;h) := |s21(ε;h)|2 = |s12(ε;h)|2.

Since we discuss the transition probability under the case where nondegenerate avoided crossing happens finite times,
we assume the crossing condition which realizes the above situation:

(A3) The potential V has a finite number of zeros t1 > · · · > tn on R and the order of every zero is 1.

From now on, we set vk := |V ′(tk)| > 0 for k = 1, . . . ,n. We can assume that V ′(t1) > 0 without loss of generality. Notice
that the sign of V (t) for t < tn changes depending on the parity of n.

For each k (k = 1, . . . ,n), there exist two simple turning points ζk(ε) and ζk(ε), that is, simple zeros in S of 2
√−det H(t;ε)

close to tk , where det H(t;ε) := −V (t)2 −ε2. They behave like ζk(ε) ∼ tk + i
vk

ε as ε ↓ 0. For k = 1, . . . ,n we define the action
integral Ak(ε) by
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Ak(ε) = 2

ζk(ε)∫
tk

√
V (t)2 + ε2 dt, (2)

where each integration path is the complex segment from tk to ζk(ε) and the branch of the square root is ε at t = tk .
On this branch, Im Ak(ε) = πε2

2vk
+O(ε4) is positive. We also define action integrals by

R j,k(ε) = 2

t j∫
tk

√
V (t)2 + ε2 dt, for 1 � j � k � n. (3)

Since t j � tk for j � k then R j,k(ε) is positive and behaves like R j,k(ε) = A j,k +O(ε2) as ε ↓ 0, where A j,k stands for the

area enclosed by V (t) and −V (t), that is A j,k = 2
∫ t j

tk
|V (t)| dt . Notice that all these actions are independent of h.

Theorem 2.3. Assume (A1), (A2) and (A3). Then the transition probability P (ε;h) is given by

P (ε;h) =
∣∣∣∣∑

k∈Λ

(−1)ke
i
h (Ak(ε)−R1,k(ε))

∣∣∣∣
2

+O
(

h

ε2
e− 2α(ε)

h

)
, as (ε,h) ↓ (0,0) and

h

ε2
↓ 0,

where α(ε) = mink∈Λ Im Ak(ε) > 0, see (2), and Λ is the set of k ∈ {1,2, . . . ,n} which attains max{v1, . . . , vn}.

Remark 2.4. In the case of one avoided nondegenerate crossing (i.e., n = 1) we have only one transfer matrix (see Proposi-
tion 3.1, identity (6)) and we take the off-diagonal entry. Then the error in Theorem 2.3 is O(h) uniformly with respect to
ε which recover the previous results of [8,11,12] in our setting.

Remark 2.5. Theorem 2.3 implies that the asymptotic behavior of P (ε;h) decays exponentially and its decay rate is charac-
terized by the maximum of (v p)p=1,...,n .

Theorem 2.6. Assume (A1), (A2) and (A3). Then the transition probability P (ε;h) is given by

P (ε;h) =
⎧⎨
⎩

1 − Cn(ε;h)π ε2

h +O(ε2) +O( ε4

h2 ) if n is odd,

Cn(ε;h)π ε2

h +O(ε2) +O( ε4

h2 ) if n is even,

as (ε,h) ↓ (0,0) and ε2

h ↓ 0. Here C1(ε;h) = 1
v1

and Cn(ε;h) for n � 2 is given by

Cn(ε;h) =
n∑

j=1

1

v j
+

∑
1� j<k�n

2√
v j vk

cos

[A j,k

h
+ 1

2

(
1

v j
+ 1

vk

)
ε2

h
log

1

h

]
. (4)

Remark 2.7. When n = 1, we recover the Landau–Zener formula.

Remark 2.8. The asymptotic expansions of P (ε;h) as ε2

h ↓ 0 depending on the parity of n imply that the time evolutions of
the eigenstates propagate along potentials ±V (t) instead of the energy of system λ±(t;ε).

Remark 2.9. Notice that vk does not determine the decay rate of the transition probability. In fact the prefactor Cn(ε;h) for
n � 2 may vanish, while C1(ε;h) does not. For example, take n = 2 and v1 = v2. Under the assumption that the leading
term of C2(ε;h) vanishes, we obtain P (ε;h) = O( ε4

h2 log 1
h ) + O(ε2), as (ε,h) ↓ (0,0) and ε2

h log 1
h ↓ 0. This assumption is

equivalent to A1,2
h = (2N + 1)π +O( ε2

h log 1
h ) for some integer N . We may understand this condition as a Bohr–Sommerfeld

quantization condition for the simple well potential.

3. Outline of the proofs

We decompose the scattering matrix S(ε;h) into the transfer matrices Tr(ε;h), Tl(ε;h), T j, j+1(ε;h) ( j = 1, . . . ,n − 1)

and Tk(ε;h) (k = 1, . . . ,n) (see, for example, [2]), which are the local change of bases between the exact WKB solutions
with the valid asymptotic expansions for h small enough in the canonical region, see [4]. In the following we denote by
diag(a,b) the diagonal matrix of order 2 such that the entries a11 = a, a22 = b and a12 = 0 = a21. The diagonals matrices
Tr(ε;h) and Tl(ε;h), which connect Jost solutions and exact WKB solutions are given by: (for p ∈ {r, l})



844 T. Watanabe, M. Zerzeri / C. R. Acad. Sci. Paris, Ser. I 350 (2012) 841–844
T p(ε;h) = [
diag(ap,ap)

](
1 +O(h)

)
with ap(ε;h) = exp

[
i

2h

(
Ap(ε) + R p(ε)

)]
, (5)

as h ↓ 0 uniformly with respect to ε ∈ (0, ε0], for some ε0 > 0, where Ar = A1 and Al = An . Here Rr(ε) and Rl(ε) are some
real-valued actions associated to ±∞. Similarly Tk,k+1(ε;h), which is the phase shift of WKB solutions between adjacent
avoided crossings, is of the form: T j, j+1(ε;h) = [diag(a j,a j)](1+O(h)) with a j(ε;h) = exp[ i

2h (A j(ε)− A j+1(ε)+ R j, j+1(ε))]
as h ↓ 0 uniformly with respect to ε ∈ (0, ε0], for some ε0 > 0. Here R j, j+1 is given by (3). For k = 1, . . . ,n, the matrix
Tk(ε;h) is the connection near k-th avoided crossing. The essential point of the proofs is to calculate Tk(ε;h) depending on
the interrelationship between h and ε2.

The case when h
ε2 ↓ 0: we can apply the connection formula near a simple turning point guaranteed by the exact WKB

method (see [12]) and then we obtain the following:

Proposition 3.1. For k = 1, . . . ,n, we have:

Tk(ε;h) =
(

1 +O( h
ε2 ) (−1)k−1iei Ak(ε)/h(1 +O(h))

(−1)k−1iei Ak(ε)/h(1 +O(h)) 1 +O( h
ε2 )

)
, (6)

as (ε,h) ↓ (0,0) and h
ε2 ↓ 0, where the action Ak is given by (2).

Computing the appropriate product of these transfer matrices obtained in (5) and (6), we get Theorem 2.3.
The case when ε2

h ↓ 0: The last connection formula among exact WKB solutions is not valid for the reason why the two
turning points accumulate to the zero of V (t) each other as ε ↓ 0. Hence instead of the exact WKB solutions, we employ the

solutions of the normal form:

(
t ε√

2
ε√
2

h
i

d
dt

)
φ(t) = 0, which is microlocally equivalent to (1) up to the translation: t → t −tk and

the scaling: t → √
vkt with respect to h small enough near the origin of the phase space. This is guaranteed by Egorov type

theorem through the Fourier integral operator U : U [u](t) = e
π
8 i 2

1
4√

2πh

∫
R

ei(−t2+2
√

2ts−s2)/2hu(s)ds, u ∈ S(R), which is associated

with the rotation π
4 on the phase space as in [7]. The advantage of the normal form is that we can get two bases of

solutions and their change of bases explicitly. Moreover we have the collinear relation between each WKB solution and each
“corresponding” normal form solution by comparing their microsupport, see [3]. The ratio of them can be computed by the
stationary phase method. Hence we obtain, through the change of bases of the normal form solutions, the following:

Proposition 3.2. For k = 1, . . . ,n, we have: Tk(ε;h) =
(

−γ −1
k e

− πε2
4vkh ie

− πε2
2vkh

−ie
− πε2

2vkh (γk)
−1e

− πε2
4vkh

)
(1+O(h)+O( ε2

h )), as (ε,h) ↓ (0,0) and ε2

h ↓ 0,

where γk = 1
iε

√
vkh
π h

− iε2
2vkh Γ (1 − iε2

2vkh ). Here Γ stands for Gamma function.

By an algebraic computation, we express and identify the entries of the scattering matrix. Note that in the odd case it
is useful to rewrite P (ε;h) as 1 − |s11(ε;h)|2 in order to get the explicit expression of the prefactor Cn(ε;h). This ends the
proof of Theorem 2.6.
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