
C. R. Acad. Sci. Paris, Ser. I 350 (2012) 871–874
Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Lie Algebras/Mathematical Physics

On the compatibility between cup products, the Alekseev–Torossian
connection and the Kashiwara–Vergne conjecture, II

Compatibilité entre cup-produits, connexion d’Alekseev–Torossian et conjecture de
Kashiwara–Vergne, II

Carlo A. Rossi

MPIM Bonn, Vivatsgasse 7, 53111 Bonn, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 June 2012
Accepted 7 August 2012
Available online 22 October 2012

Presented by Michèle Vergne

We give a different proof of the famous result on compatibility between cup product
(Kontsevich, 2003, [3, Section 8]) in cohomology of degree 0, for a finite-dimensional Lie
algebra, from which we deduce an alternative way of re-writing Kontsevich’s star product
by means of the Alekseev–Torossian connection (Alekseev and Torossian, 2010, [1]).
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r é s u m é

On donne ici une preuve différente de la compatibilité entre cup produits (Kontsevich,
2003, [3, Section 8]) en cohomologie de degré 0 dans le cas d’une algèbre de Lie de
dimension finie, d’où on déduit, en utilisant la connection de Alekseev–Torossian (Alekseev
et Torossian, 2010, [1]), une écriture alternative du produit-étoilé de Kontsevich.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. The 1-form governing the compatibility between cup products

We consider g as in [4, Section 2] and the associated Poisson variety (X = g∗,π). Since π is linear, we may safely set
h̄ = 1 and consider the associative algebra (A, �), for � as in [4, Formula (2)].

For a non-negative integer n, let us consider the projection πn,2 from C+
n+2,0 onto C+

2,0 which forgets all points in H
+

except the last two: it extends smoothly to a projection from C+
n+2,0 onto C+

2,0, which we denote by the same symbol. It is

clear that πn,2 defines a fibration onto C+
2,0, whose typical fiber is a smooth, oriented manifold with corners of dimension 2n.

With Γ in Gn+2,0 such that |E(Γ )| = 2n, we associate a smooth 0-form on C+
2,0 with values in the bidifferential operators

on A via

T π
Γ ( f1, f2) = μn+2

(
πn,2,∗

(
ωτ,Γ (π ⊗ · · · ⊗ π︸ ︷︷ ︸

n

⊗ f1 ⊗ f2)
)) = �̂Γ

(
BΓ (π, . . . ,π︸ ︷︷ ︸

n

)
)
( f1, f2), �̂Γ = πn,2,∗(ωΓ ),

(1)

where πn,2,∗ denotes the integration along the fiber of the operator-valued form ωτ,Γ w.r.t. the projection πn,2. We finally
set
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T π ( f1, f2) =
∑
n�0

1

n!
∑

Γ ∈Gn+2,0
|E(Γ )|=2n

T π
Γ ( f1, f2), f i ∈ A, i = 1,2. (2)

Formula (2) yields a well-defined smooth function on C+
2,0 with values in the bidifferential operators on A.

Proof of Theorem 3.2, [4]. First of all, for Γ in Gn+2,0 such that |E(Γ )| = 2n, n � 1, let us compute

d
(
T π

Γ ( f1, f2)
) = d�̂Γ

(
BΓ (π, . . . ,π︸ ︷︷ ︸

n

)
)
( f1, f2) = π∂

n,2,∗(ωΓ )
(
BΓ (π, . . . ,π︸ ︷︷ ︸

n

)
)
( f1, f2),

where the second equality follows by means of the generalized Stokes Theorem for integration along the fiber, and π∂
n,2,∗

denotes integration along the boundary of the compactification of the typical fiber of the projection πn,2.
The boundary strata of codimension 1 of the compactification of the typical fiber of πn,2 can be deduced from the

boundary strata of codimension 1 of C+
n+2,0:

i) there is a subset A of [n + 2] = {1, . . . ,n}, 1 � |A| � n which contains either n + 1 or n + 2 or neither of them, such
that points in H

+ labeled by A collapse either to the n + 1-st or n + 2-nd or to a point in H
+ different from n + 1 and

n + 2;
ii) there is a subset A of [n + 2], which either contains both n + 1, n + 2 or contains neither of them, such that the points

in H
+ labeled by A approach R.

For Γ as above, we denote by ΓA the subgraph of Γ , whose edges have both endpoints labeled by A.
The boundary strata of type ii) yield trivial contributions. Namely, let us consider first a subset A such that n + 1,

n + 2 /∈ A: Fubini’s Theorem implies that

π∂,A
n,2,∗(ωΓ ) ∝

∫
C+

A,0

ωΓA ,

and the properties of ω imply that the form degree of ωΓA equals 2|A|, while the dimension of C+
A,0 equals 2|A| − 2. If A

contains both n + 1, n + 2, we may repeat the previous arguments verbatim by replacing A by Ac .
Let us consider a general boundary stratum of type i) such that A contains neither n + 1 nor n + 2: Fubini’s Theorem

and [3, Lemma 6.6] imply that the corresponding contribution vanishes, if |A| � 3. In the case |A| = 2, the only non-trivial
contribution corresponds to ΓA with one single edge, whence the boundary property i) of ω in [4] and integration of volS1

over S1 yields

π∂,A
n,2,∗(ωΓ ) = πn−1,2,∗(ωΓ/ΓA ).

Observe that Γ/ΓA , obtained by shrinking ΓA to a single vertex, belongs to Gn+1,0, no edge departs from n + 1, n + 2 and
all other vertices are bivalent except one, which is trivalent (here, the valence of a vertex is the number of outgoing edges
from the said vertex).

Finally, let us consider a boundary stratum of type i), labeled by a subset n + 1 ∈ A, n + 2 /∈ A. Again by means of [3,
Lemma 6.6] and the boundary property i) of ω, the only non-trivial contribution comes from ΓA consisting of a single edge
with endpoint n + 1 and initial point different from n + 2, whence as before

π∂,A
n,2,∗(ωΓ ) = πn−1,2,∗(ωΓ/ΓA ).

Due modifications of the previous arguments yield a similar formula in the situation n + 1 /∈ A, n + 2 ∈ A. Here, Γ/ΓA , if
n + 1 is in A, belongs to Gn+1,0, exactly one edge departs from n + 1, no edge departs from n + 2, and all other vertices are
bivalent; when n + 2 belongs to A, Γ/ΓA is described in a similar way by switching n + 1 and n + 2.

The previous computations yield

d
(
T π ( f1, f2)

) =
∑
n�1

1

n!
∑

Γ ∈Gn+2,0
|E(Γ )|=2n

∑
A⊆[n+2], |A|=2
n+1∈A,n+2/∈A

�̂Γ/ΓA

(
BΓ (π, . . . ,π︸ ︷︷ ︸

n

)
)
( f1, f2)

+
∑
n�1

1

n!
∑

Γ ∈Gn+2,0
|E(Γ )|=2n

∑
A⊆[n+2], |A|=2
n+1/∈A,n+2∈A

�̂Γ/ΓA

(
BΓ (π, . . . ,π︸ ︷︷ ︸

n

)
)
( f1, f2)

+
∑
n�1

1

n!
∑

Γ ∈Gn+2,0

∑
A⊆[n+2], |A|=2

n+1,n+2/∈A

�̂Γ/ΓA

(
BΓ (π, . . . ,π︸ ︷︷ ︸

n

)
)
( f1, f2)
|E(Γ )|=2n
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i) ii) iii)

Fig. 1. i) A rooted, bivalent tree in G6,0, ii) a wheel-like graph with a bivalent rooted tree in G7,0, iii) a rooted, bivalent tree in G6,0 with an edge connecting
the first external vertex to the root.

Fig. 1. i) Un arbre bivalent enraciné dans G6,0, ii) un graphe de type roue dans G7,0 avec un arbre bivalent enraciné y-attaché, iii) un arbre bivalent dans
G6,0 avec une arête joignante le premier sommet exterieur à la racine.

=
∑
n�0

1

n!
∑

Γ ∈Gn+2,0
|E(Γ )|=2n+1

�̂Γ

(
BΓ (π, . . . ,π︸ ︷︷ ︸

n

)
)([π, f1], f2

)

+
∑
n�0

1

n!
∑

Γ ∈Gn+2,0
|E(Γ )|=2n+1

�̂Γ

(
BΓ (π, . . . ,π︸ ︷︷ ︸

n

)
)(

f1, [π, f2]
)

+
∑
n�0

1

n!
∑

Γ ∈Gn+2,0
|E(Γ )|=2n+1

�̂Γ

(
BΓ

([π,π ],π, . . . ,π︸ ︷︷ ︸
n−1

))
( f1, f2), (3)

recalling the explicit shape of the quotient subgraph Γ/ΓA in the three previous cases and using Leibniz’ rule to re-write
the sums over A in the bidifferential operators; [π,π ] denotes the trivector field on x, whose components are given by the
sum over the cyclic permutations of { j,k, l} in πi j∂iπkl .

The third term in the final expression of (3) vanishes because of the Jacobi identity.
If we consider a general graph Γ in Gn+2,0 as in the first term on the right-hand side of (3), any bivalent vertex different

from n + 1, n + 2 may be the endpoint of at most one arrow because of the linearity of π . Thus, by slightly adapting the
arguments of [2, Subsections 3.1.2–3.1.4], Γ factorizes uniquely into the union of its simple components,1 which are depicted
in Fig. 1 (the two gray-shaded vertices of the first type are called external, while the remaining vertices of the first type are
called internal). Observe that the external vertices are only endpoints of edges, while the internal vertices have exactly two
outgoing edges and one ingoing edge, except the root in i). By definition, Γ has exactly one simple component of type iii).

Let us consider a simple graph �Γ , resp. Γ� , of type iii) with exactly one edge connecting n + 1, resp. n + 2, to the root:
then, borrowing previous notation, we may define

Ωπ
1,�Γ ( f1 ⊗ ξ, f2) = �̂�Γ

(
(ξ ⊗ 1 ⊗ 1) ◦ (μn ⊗ 1 ⊗ 1) ◦ τΓ

)
(π ⊗ · · · ⊗ π︸ ︷︷ ︸

n

⊗ f1 ⊗ f2), (4)

Ωπ
2,Γ�( f1, f2 ⊗ ξ) = �̂Γ�

(
(ξ ⊗ 1 ⊗ 1) ◦ (μn ⊗ 1 ⊗ 1) ◦ τΓ

)
(π ⊗ · · · ⊗ π︸ ︷︷ ︸

n

⊗ f1 ⊗ f2), (5)

where f i in A, i = 1,2, ξ in g∗ , and Γ is the rooted, bivalent tree obtained from �Γ or Γ� by removing the edge from n + 1
or n + 2 to the root.

Observe that �̂�Γ and �̂Γ� are well-defined, smooth 1-forms on C+
2,0. Further, since Γ is a rooted, bivalent tree, (μn ⊗

1 ⊗ 1)◦ τΓ is a linear map from A⊗2 to g⊗ A⊗2: hence, contraction of g with g∗ yields an endomorphism of A⊗2 consisting
of differential operators with constant coefficients (and possibly infinite order). Summing up over all simple graphs of
type iii) (4) and (5) we obtain well-defined, smooth 1-forms Ωπ

i , i = 1,2, on C+
2,0 with values in g ⊗ Ŝ(g∗)⊗2, where we

identify Ŝ(g∗) with the algebra of differential operators on A with constant coefficients.
On the other hand, the sum over all simple graphs of type i) and ii) yields the bidifferential operator T π (•,•) by the

arguments of [2, Subsubsections 3.1.2–3.1.4].
Therefore, Fubini’s Theorem and the decomposition of admissible graphs into simple components of type i), ii) and iii)

yield

d
(
T π ( f1, f2)

) = T π
(
Ωπ

1

([π, f1], f2
)) + T π

(
Ωπ

2

(
f1, [π, f2]

))
, f i ∈ A, i = 1,2. (6)

The 0-form T π and the 1-forms Ωπ
i , i = 1,2, are smooth on C+

2,0 and extend to the class L1 when restricted on

piecewise differentiable curves on C+
2,0.

1 An element Γ of Gn,2 is simple, if the graph obtained from Γ by removing all arrows connecting to the vertices of the second type is connected. In the
present situation, we may regard Γ in Gn+2,0 as an element of Gn,2 by interpreting the last two vertices of the first type as vertices of the second type.
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Now, let us evaluate T π ( f1, f2) at a point in the boundary stratum C 2 = S1 of C+
2,0 (i.e. the two distinct points in H

+
collapse together along a prescribed direction). The skew-symmetry of π and the result of [5] imply that the only non-trivial
contribution comes from the unique graph in G2,0 with no edges.

Let us evaluate T π ( f1, f2) at the boundary stratum C+
0,2 = {0,1} of codimension 2 of C+

2,0 (i.e. the two distinct points
in H

+ approach 0 and 1 on R). Dimensional reasons, the linearity of π and the main result of [5] imply that T π ( f1, f2)

evaluated at C+
0,2 = {0,1} equals f1 � f2.

If we now consider a piecewise differentiable curve γ on C+
2,0 connecting the chosen point in C 2 = S1 with C+

0,2 = {0,1},

and whose interior is in C+
2,0, integration of (6) along γ yields

f1 � f2 − f1 f2 =
∫
γ

(
T π

(
Ωπ

1

([π, f1], f2
)) + T π

(
Ωπ

2

(
f1, [π, f2]

)))
, (7)

hence the proof of [4, Theorem 3.2], whose claim is precisely a special case of the famous compatibility between cup
products [3, Theorem 8.2]. �
2. Relationship with the AT connection

By their very construction, T π and Ωπ
i , i = 1,2, extend to the completed symmetric algebra Â = Ŝ(g) = K[[x1, . . . , xd]].

For yi , i = 1,2, in g, we consider e yi in Â.
A direct computation recalling Formulæ (4), (5) yields

Ωπ
1

(
e y1 ⊗ ξ, e y2

) = 〈
ξ,ω1(y1, y2)

〉
e y1 ⊗ e y2 , Ωπ

2

(
e y1 ⊗ ξ, e y2

) = 〈
ξ,ω2(y1, y2)

〉
e y1 ⊗ e y2 ,

where ωi denotes here the AT connection on C+
2,0 [6,1].

Following the same patterns, it is not difficult to prove by direct computations the following identities:

Ωπ
1

([
π, e y1

]
, e y2

) = 〈[
y1,ω1(y1, y2)

]
, ∂y1

〉(
e y1

) ⊗ e y2 + trg
(
ad(y1)∂y1ω1(y1, y2)

)
e y1 ⊗ e y2 ,

Ωπ
2

([
π, e y1

]
, e y2

) = e y1 ⊗ 〈[
y2,ω2(y1, y2)

]
, ∂y2

〉(
e y2

) + trg
(
ad(y2)∂y2ω2(y1, y2)

)
e y1 ⊗ e y2 ,

where trg(•) denotes the trace of endomorphisms of g, ad(•) the adjoint representation of g and ∂y1ω1(y1, y2) the endo-
morphism of g defined via

(
∂y1ω1(y1, y2)

)
(x) = d

dt
ω1(y1 + tx, y2)

∣∣∣∣
t=0

, x ∈ g.

It is possible to re-write (7) as

e y1 � e y2 − e y1 e y2 =
∫
γ

(
T π

(〈[
y1,ω1(y1, y2)

]
, ∂y1

〉(
e y1

)
, e y2

) + T π
(
e y1 ,

〈[
y1,ω1(y1, y2)

]
, ∂y1

〉(
e y2

)))

+ (
trg

(
ad(y1)∂y1ω1(y1, y2)

) + trg
(
ad(y2)∂y2ω2(y1, y2)

))∫
γ

T π
(
e y1 , e y2

)

=
∫
γ

(〈[
y1,ω1(y1, y2)

]
, ∂y1

〉 + 〈[
y2,ω2(y1, y2)

]
, ∂y1

〉 + div
(
ω(y1, y2)

))
DT(y1, y2)e ZT (y1,y2),

borrowing notation from [4, Section 4] and where, following notation from [1],

div
(
ω(y1, y2)

) = trg
(
ad(y1)∂y1ω1(y1, y2)

) + trg
(
ad(y2)∂y2ω1(y1, y2)

)
.

Finally, by DT(•,•) and ZT(•,•) we denote the functions over C+
2,0, providing deformations of the Duflo density function

D(•,•) and the Baker–Campbell–Hausdorff (shortly, BCH) formula Z(•,•) respectively, introduced in [6].
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