Mathematical Analysis/Mathematical Problems in Mechanics

Asymptotically exact Korn's constant for thin cylindrical domains

Développement asymptotique précis de la constante de Korn dans une poutre mince

Roberto Paroni ${ }^{\text {a }}$, Giuseppe Tomassetti ${ }^{\text {b }}$
${ }^{\text {a }}$ Dipartimento di Architettura e Pianificazione, Università degli Studi di Sassari, 07041 Alghero, Italy
b Dipartimento di Ingegneria Civile, Università degli Studi di Roma "Tor Vergata", 00133 Roma, Italy

A R T I C L E I N F O

Article history:

Received 17 September 2012
Accepted 19 September 2012
Available online 29 September 2012
Presented by Philippe G. Ciarlet

Abstract

We consider a cylinder Ω^{ε} having fixed length and small cross-section $\varepsilon \omega$ with $\omega \subset \mathbb{R}^{2}$. Let $1 / K^{\varepsilon}$ be the Korn constant of Ω^{ε}. We show that, as ε tends to zero, $K^{\varepsilon} / \varepsilon^{2}$ converges to a positive constant. We provide a characterization of this constant in terms of certain parameters that depend on ω.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

On considère une poutre verticale Ω^{ε} de hauteur fixée et de petite section $\varepsilon \omega$ avec $\omega \subset \mathbb{R}^{2}$. Soit $1 / K^{\varepsilon}$ la constante de Korn dans Ω^{ε}. On démontre que, lorsque ε tend vers zéro, $K^{\varepsilon} / \varepsilon^{2}$ converge vers une constante positive. On caractérise la limite en fonction de paramètres qui dépendent de ω.
© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and results

Given a domain $\Omega \subset \mathbb{R}^{3}$, Korn's inequality [13]:

$$
\int_{\Omega}|\nabla \boldsymbol{u}|^{2} \mathrm{~d}^{3} \boldsymbol{x} \leqslant C_{K} \int_{\Omega}|\boldsymbol{E}(\boldsymbol{u})|^{2} \mathrm{~d}^{3} \boldsymbol{x}, \quad \forall \boldsymbol{u} \in \mathcal{A} \subset H^{1}\left(\Omega ; \mathbb{R}^{3}\right)
$$

is the key estimate to establish the solvability of the boundary-value problem of linear elastostatics [2]. This estimate holds under fairly general assumptions on Ω, provided that certain side conditions are imposed on the displacement \boldsymbol{u} through the choice of the admissible space \mathcal{A} (two examples are given in (2) below). It asserts that the L^{2} norm of the strain $\boldsymbol{E}(\boldsymbol{u}):=\operatorname{sym} \nabla \boldsymbol{u}$ controls the L^{2} norm of the whole displacement gradient. The optimal choice for Korn's constant C_{K} is given by $1 / K(\Omega, \mathcal{A})$, where

$$
K(\Omega, \mathcal{A}):=\inf _{\boldsymbol{u} \in \mathcal{A} \backslash\{\mathbf{0}\}} \frac{\int_{\Omega}|\boldsymbol{E}(\boldsymbol{u})|^{2} \mathrm{~d}^{3} \boldsymbol{x}}{\int_{\Omega}|\nabla \boldsymbol{u}|^{2} \mathrm{~d}^{3} \boldsymbol{x}}
$$

A vast body of literature investigates the dependence of Korn's constant on the geometric properties of the domain. Estimates for thin domains, such as rods and plates, were obtained in [12,15,1,3,18,5,16,11]. Let us consider a family of rod-like domains:

[^0]$$
\Omega^{\varepsilon}=\varepsilon \omega \times(0, \ell):=\left\{\boldsymbol{x}^{\varepsilon}=\left(\varepsilon x_{1}, \varepsilon x_{2}, x_{3}\right) \in \mathbb{R}^{3}:\left(x_{1}, x_{2}\right) \in \omega, x_{3} \in(0, \ell)\right\} \quad \text { with } \varepsilon>0
$$
and let us set
\[

$$
\begin{equation*}
\kappa_{\sharp}^{\varepsilon}(\omega, \ell):=\frac{1}{\varepsilon^{2}} K\left(\Omega^{\varepsilon}, \mathcal{A}_{\sharp}^{\varepsilon}\right)=\inf _{\boldsymbol{u} \in \mathcal{A}_{\sharp}^{\varepsilon} \backslash\{\mathbf{0}\}} \frac{\int_{\Omega^{\varepsilon}}|\boldsymbol{E}(\boldsymbol{u})|^{2} \mathrm{~d}^{3} \boldsymbol{x}^{\varepsilon}}{\int_{\Omega^{\varepsilon}}|\varepsilon \nabla \boldsymbol{u}|^{2} \mathrm{~d}^{3} \boldsymbol{x}^{\varepsilon}}, \tag{1}
\end{equation*}
$$

\]

where the subscript " \sharp " stands for either "dd" or "dn", with

$$
\begin{equation*}
\mathcal{A}_{d d}^{\varepsilon}=\left\{\boldsymbol{u} \in H^{1}\left(\Omega^{\varepsilon} ; \mathbb{R}^{3}\right):\left.\boldsymbol{u}\right|_{x_{3}=0}=\left.\boldsymbol{u}\right|_{x_{3}=\ell}=\mathbf{0}\right\}, \quad \mathcal{A}_{d n}^{\varepsilon}=\left\{\boldsymbol{u} \in H^{1}\left(\Omega^{\varepsilon} ; \mathbb{R}^{3}\right):\left.\boldsymbol{u}\right|_{x_{3}=0}=\mathbf{0}\right\} . \tag{2}
\end{equation*}
$$

In this Note we show that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \kappa_{\sharp}^{\varepsilon}(\omega, \ell)=\kappa_{\sharp}(\omega, \ell), \quad \text { where } \kappa_{d d}(\omega, \ell)=\frac{\pi^{2}}{4 \ell^{2}} \frac{J_{t}(\omega)}{A(\omega)} \text { and } \kappa_{d n}(\omega, \ell)=\frac{\pi^{2}}{8 \ell^{2}} \frac{J(\omega)}{A(\omega)}, \tag{3}
\end{equation*}
$$

with

$$
\begin{aligned}
& J_{t}(\omega):=\min _{\psi \in H^{1}(\omega)} \int_{\omega}\left(D_{1} \psi-x_{2}\right)^{2}+\left(D_{2} \psi+x_{1}\right)^{2} \mathrm{~d} x_{1} \mathrm{~d} x_{2}, \quad J(\omega):=\min \left\{J_{1}(\omega), J_{2}(\omega), \frac{J_{t}(\omega)}{2}\right\}, \\
& J_{1}(\omega):=\int_{\omega} x_{2}^{2} \mathrm{~d} x_{1} \mathrm{~d} x_{2}, \quad J_{2}(\omega):=\int_{\omega} x_{1}^{2} \mathrm{~d} x_{1} \mathrm{~d} x_{2}, \quad A(\omega):=\int_{\omega} 1 \mathrm{~d} x_{1} \mathrm{~d} x_{2}
\end{aligned}
$$

We point out that, while the limit $\kappa_{d d}$ depends on the cross-section simply through the ratio J_{t} / A, the dependence of $\kappa_{d n}$ on ω is more involved. For example, $J_{t} / 2=J_{1}$ for a circle, $J<J_{t} / 2$ for an ellipsis, and $J_{t} / 2<J$ for a square. A detailed discussion of these examples can be found in [20].

2. Rescaling and Γ-convergence of Rayleigh's quotient

Our proof of (3) is based on Γ-convergence. Following the standard approach [4], we perform a change of variables. To this end, we set $\Omega=\Omega^{1}$, and $\mathcal{A}_{\sharp}=\mathcal{A}_{\sharp}^{1}$. Then, to every $\boldsymbol{u} \in \mathcal{A}_{\sharp}^{\varepsilon}$ we associate $\boldsymbol{v} \in \mathcal{A}_{\sharp}$ defined by $v_{\alpha}(\boldsymbol{x})=\varepsilon u_{\alpha}\left(\boldsymbol{x}^{\varepsilon}\right)$ and $v_{3}(\boldsymbol{x})=u_{3}\left(\boldsymbol{x}^{\varepsilon}\right)$, where $\boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}\right) \in \Omega$ and $\boldsymbol{x}^{\varepsilon}=\left(\varepsilon x_{1}, \varepsilon x_{2}, x_{3}\right) \in \Omega^{\varepsilon}$. As a result, we can rewrite (1) as

$$
\begin{aligned}
& \kappa_{\sharp}^{\varepsilon}(\omega, \ell)=\inf _{\boldsymbol{v} \in \mathcal{A}_{\sharp} \backslash\{\mathbf{0}\}} \mathcal{R}^{\varepsilon}(\boldsymbol{v}), \quad \text { where } \mathcal{R}^{\varepsilon}(\boldsymbol{v}):=\frac{\int_{\Omega}\left|\boldsymbol{E}^{\varepsilon}(\boldsymbol{v})\right|^{2} \mathrm{~d}^{3} \boldsymbol{x}}{\int_{\Omega}\left|\varepsilon \nabla^{\varepsilon} \boldsymbol{v}\right|^{2} \mathrm{~d}^{3} \boldsymbol{x}}, \quad \text { with } \\
& \left(\nabla^{\varepsilon} \boldsymbol{v}\right)_{\alpha \beta}=\frac{v_{\alpha, \beta}}{\varepsilon^{2}}, \quad\left(\nabla^{\varepsilon} \boldsymbol{v}\right)_{\alpha 3}=\frac{v_{\alpha, 3}}{\varepsilon}, \quad\left(\nabla^{\varepsilon} \boldsymbol{v}\right)_{3 \alpha}=\frac{v_{3, \alpha}}{\varepsilon}, \quad\left(\nabla^{\varepsilon} \boldsymbol{v}\right)_{33}=v_{3,3}, \quad \boldsymbol{E}^{\varepsilon}(\boldsymbol{v})=\operatorname{sym} \nabla^{\varepsilon} \boldsymbol{v},
\end{aligned}
$$

where Greek indices run over $\{1,2\}$, and a comma denotes partial differentiation. We next introduce the spaces:

$$
\begin{aligned}
& \mathcal{A}^{B N}:=\left\{\boldsymbol{v} \in H^{1}\left(\Omega ; \mathbb{R}^{3}\right): E_{\alpha 3}(\boldsymbol{v})=\mathbf{0}\right\}, \\
& H_{d n}^{1}(0, \ell):=\left\{f \in H^{1}(0, \ell): f(0)=0\right\}, \quad \text { and } \quad H_{d d}^{1}(0, \ell):=\left\{f \in H_{d n}^{1}(0, \ell): f(\ell)=0\right\},
\end{aligned}
$$

and we prove:
Theorem 2.1. Let the functional $\mathcal{R}: \mathcal{A}_{\sharp} \times H_{\sharp}^{1}(0, \ell) \rightarrow \mathbb{R} \cup\{+\infty\}$ be defined by

$$
\mathcal{R}(\boldsymbol{v}, \theta):=\frac{\int_{\Omega} v_{3,3}^{2}+\frac{J_{t}}{2 A}\left(\theta^{\prime}\right)^{2} \mathrm{~d}^{3} \boldsymbol{x}}{2 \int_{\Omega} W_{13}^{2}(\boldsymbol{v})+W_{23}^{2}(\boldsymbol{v})+\theta^{2} \mathrm{~d}^{3} \boldsymbol{x}} \quad \text { if }(\boldsymbol{v}, \theta) \neq(\mathbf{0}, 0) \text { and } \boldsymbol{v} \in \mathcal{A}_{\sharp} \cap \mathcal{A}^{B N}=: \mathcal{A}_{\sharp}^{B N},
$$

and $\mathcal{R}^{\varepsilon}(\boldsymbol{v}, \theta):=+\infty$ otherwise. The sequence $\mathcal{R}^{\varepsilon} \Gamma$-converges to \mathcal{R} in the following sense:
(i) for every sequence $\left\{\boldsymbol{v}^{\varepsilon}\right\} \subset \mathcal{A}_{\sharp}$ and for every $(\boldsymbol{v}, \theta) \in \mathcal{A}_{\sharp} \times H_{\sharp}^{1}(0, \ell)$ such that $\boldsymbol{v}^{\varepsilon} \xrightarrow{H^{1}} \boldsymbol{v}$ and $\left(\varepsilon \nabla \boldsymbol{v}^{\varepsilon}\right)_{21} \xrightarrow{L^{2}} \theta$ we have that $\mathcal{R}(\boldsymbol{v}, \theta) \leqslant$ $\liminf _{\varepsilon} \mathcal{R}^{\varepsilon}\left(\boldsymbol{v}^{\varepsilon}\right) ;$
(ii) for every $(\boldsymbol{v}, \theta) \in \mathcal{A}_{\sharp} \times H_{\sharp}^{1}(0, \ell)$ there exists a sequence $\left\{\boldsymbol{v}^{\varepsilon}\right\} \subset \mathcal{A}_{\sharp}$ such that $\boldsymbol{v}^{\varepsilon} \xrightarrow{H^{1}} \boldsymbol{v},\left(\varepsilon \nabla \boldsymbol{v}^{\varepsilon}\right)_{21} \xrightarrow{L^{2}} \theta$, and $\limsup _{\varepsilon} \mathcal{R}^{\varepsilon}\left(\boldsymbol{v}^{\varepsilon}\right) \leqslant$ $\mathcal{R}(\boldsymbol{v}, \theta)$.

In order to prove the liminf inequality (i), we use the lower semicontinuity of the numerator of $\mathcal{R}^{\varepsilon}$ with respect to the weak convergence in L^{2} of $\boldsymbol{E}^{\varepsilon}\left(\boldsymbol{v}^{\varepsilon}\right)$, and certain arguments of common use to derive rod theories (see for instance [1,14,24]). We also use the strong convergence of $\varepsilon \nabla^{\varepsilon} \boldsymbol{v}^{\varepsilon}$ in the denominator. To this aim we use the next theorem, where $\mathbb{R}_{\text {skw }}^{3 \times 3}$ is the space of skew-symmetric 3×3 matrices and $\boldsymbol{W}(\boldsymbol{u})=\frac{1}{2}\left(\nabla \boldsymbol{u}-\nabla \boldsymbol{u}^{T}\right)$.

Theorem 2.2. Let $\left\{\boldsymbol{v}^{\varepsilon}\right\} \subset \mathcal{A}_{\sharp}$ be such that $\sup _{\varepsilon}\left\|\boldsymbol{E}^{\varepsilon}\left(\boldsymbol{v}^{\varepsilon}\right)\right\|_{L^{2}}<+\infty$. Then, up to a subsequence, we have

$$
\begin{align*}
& \boldsymbol{v}^{\varepsilon} \xrightarrow{H^{1}} \boldsymbol{v} \in \mathcal{A}_{\sharp}, \quad \boldsymbol{E}^{\varepsilon}(\boldsymbol{v}) \xrightarrow{L^{2}} \boldsymbol{E}, \quad \text { with } E_{3 i}(\boldsymbol{v})=0 \text { and } E_{33}(\boldsymbol{v})=E_{33}, \tag{4}\\
& \varepsilon \nabla^{\varepsilon} \boldsymbol{v}^{\varepsilon} \xrightarrow{L^{2}} \boldsymbol{W} \in H^{1}\left(\Omega ; \mathbb{R}_{\mathrm{skw}}^{3 \times 3}\right) \quad \text { with } W_{\alpha 3}=W_{\alpha 3}(\boldsymbol{v}) . \tag{5}
\end{align*}
$$

Moreover, there exist $\theta \in H_{\sharp}^{1}(0, \ell)$ and $\varphi \in L^{2}\left(0, \ell ; H^{1}(\omega)\right)$ such that

$$
\begin{equation*}
W_{21}(\boldsymbol{x})=\theta\left(x_{3}\right), \quad 2 E_{13}(\boldsymbol{x})=\varphi_{, 1}\left(x_{1}, x_{2}\right)-x_{2} \theta^{\prime}\left(x_{3}\right), \quad 2 E_{23}(\boldsymbol{x})=\varphi_{, 2}\left(x_{1}, x_{2}\right)+x_{1} \theta^{\prime}\left(x_{3}\right) . \tag{6}
\end{equation*}
$$

By a standard result from Γ-convergence, see [6], Theorem 2.1 and Theorem 2.2 imply that

$$
\lim _{\varepsilon \rightarrow 0} \inf _{\boldsymbol{v} \in \mathcal{A}_{\sharp} \backslash\{\mathbf{0}\}} \mathcal{R}^{\varepsilon}(\boldsymbol{v})=\min _{(\boldsymbol{v}, \theta) \in \mathcal{A}_{\sharp}^{B N} \times H_{\sharp}^{1}(0, \ell)} \mathcal{R}(\boldsymbol{v}, \theta) .
$$

It is shown in [14] that the Bernoulli-Navier space $\mathcal{A}^{B N}$ defined in the statement of Theorem 1 can be characterized as follows

$$
\mathcal{A}^{B N}=\left\{\boldsymbol{v} \in H^{1}\left(\Omega ; \mathbb{R}^{3}\right): v_{\alpha}(\boldsymbol{x})=w_{\alpha}\left(x_{3}\right), v_{3}(\boldsymbol{x})=w_{3}\left(x_{3}\right)-x_{\alpha} w_{\alpha}^{\prime}\left(x_{3}\right), w_{\alpha} \in H^{2}(0, \ell), w_{3} \in H^{1}(0, \ell)\right\}
$$

where a prime denotes differentiation. From this characterization we derive

$$
\begin{equation*}
\min _{(\boldsymbol{v}, \theta) \in \mathcal{A}_{\sharp}^{B N} \times H_{\sharp}^{1}(0, \ell)} \mathcal{R}(\boldsymbol{v}, \theta)=\min _{(\boldsymbol{w}, \theta) \in A_{\sharp} \backslash\{(\mathbf{0}, 0)\}} \frac{\int_{0}^{\ell} J_{2}\left(w_{1}^{\prime \prime}\right)^{2}+J_{1}\left(w_{2}^{\prime \prime}\right)^{2}+A\left(w_{3}^{\prime}\right)^{2}+\frac{J_{t}}{2}\left(\theta^{\prime}\right)^{2} \mathrm{~d} x_{3}}{2 A \int_{0}^{\ell}\left(w_{1}^{\prime}\right)^{2}+\left(w_{2}^{\prime}\right)^{2}+\theta^{2} \mathrm{~d} x_{3}}, \tag{7}
\end{equation*}
$$

where $A_{\sharp}=H_{\sharp}^{2}\left(0, \ell ; \mathbb{R}^{2}\right) \times H_{\sharp}^{1}(0, \ell) \times H_{\sharp}^{1}(0, \ell)$ with

$$
H_{d n}^{2}(0, \ell):=\left\{f \in H^{2}(0, \ell): f(0):=0, f^{\prime}(0)=0\right\}, \quad H_{d d}^{2}(0, \ell):=\left\{f \in H_{d n}^{2}(0, \ell): f(\ell)=0, f^{\prime}(\ell)=0\right\} .
$$

From (7), by means of standard Poincare's inequalities, we arrive at (3). The statements contained in (4) are a direct consequence of the assumption $\sup _{\varepsilon}\left\|\boldsymbol{E}^{\varepsilon}\left(\boldsymbol{v}^{\varepsilon}\right)\right\|_{L^{2}}<+\infty$. The characterization of $E_{\alpha 3}$, proved under the assumption that ω is simply connected, follows from a compatibility equation between infinitesimal strain and infinitesimal rotation.

The proof of the strong convergence statement (5) is quite delicate and it is achieved in several steps. First the function $\boldsymbol{v}^{\varepsilon}$ is extended, by using a method of [17], to the infinite cylinder $\omega \times(-\infty,+\infty)$ in such a way that $\left\|\boldsymbol{E}^{\varepsilon}\left(\boldsymbol{v}^{\varepsilon}\right)\right\|_{L^{2}(\omega \times(-\infty,+\infty))} \leqslant C\left\|\boldsymbol{E}^{\varepsilon}\left(\boldsymbol{v}^{\varepsilon}\right)\right\|_{L^{2}(\Omega)}$. Then, by mollifying $\varepsilon \nabla^{\varepsilon} \boldsymbol{v}^{\varepsilon}$ with respect to x_{3} and by integrating over ω, a function $\boldsymbol{H}^{\varepsilon}=\boldsymbol{H}^{\varepsilon}\left(x_{3}\right)$ is defined. An argument based on the invariance of Korn's constant under homothetic scaling (see $[10,9]$) yields a bound on the oscillation of $\varepsilon \nabla^{\varepsilon} \boldsymbol{v}^{\varepsilon}$ which, after appropriate estimates, leads to $\left\|\left(\boldsymbol{H}^{\varepsilon}\right)^{\prime}\right\|_{L^{2}(0, \ell)} \leqslant$ $C\left\|\boldsymbol{E}^{\varepsilon}\left(\boldsymbol{v}^{\varepsilon}\right)\right\|_{L^{2}(\omega \times(-\infty,+\infty))}$ and $\left\|\boldsymbol{H}^{\varepsilon}-\varepsilon \nabla^{\varepsilon} \boldsymbol{v}^{\varepsilon}\right\|_{L^{2}}^{2} \leqslant \varepsilon C\left\|\boldsymbol{E}^{\varepsilon}\left(\boldsymbol{v}^{\varepsilon}\right)\right\|_{L^{2}}^{2} \rightarrow 0$. From these estimates we deduce that, up to a subsequence, $\boldsymbol{H}^{\varepsilon} \stackrel{H^{1}}{\rightharpoonup} \boldsymbol{W}$ and that \boldsymbol{W} is also the strong L^{2}-limit of $\varepsilon \nabla^{\varepsilon} \boldsymbol{v}^{\varepsilon}$.

The detailed proofs of the results presented in this Note will be given in a forthcoming paper [20]. The arguments presented can also be used to prove similar results for thin-walled beams [7,8], and for plates [3,19,21-23].

Acknowledgements

We gratefully acknowledge the assistance of Antonio Gaudiello and Gaetano Napoli in the preparation of the last draft of the manuscript.

References

[1] G. Anzellotti, S. Baldo, D. Percivale, Dimension reduction in variational problems, asymptotic development in Γ-convergence and thin structures in elasticity, Asymptot. Anal. 9 (1) (1994) 61-100.
[2] P.G. Ciarlet, Mathematical Elasticity, vol. I, North-Holland, Amsterdam, 1988.
[3] P.G. Ciarlet, Mathematical Elasticity, vol. II, North-Holland, Amsterdam, 1997.
[4] P.G. Ciarlet, P. Destuynder, A justification of the two-dimensional plate model, J. Mécanique 18 (1979) 315-344.
[5] D. Cioranescu, O.A. Oleinik, G. Tronel, Korn's inequalities for frame type structures and junctions with sharp estimates for the constants, Asymptot. Anal. 8 (1) (1994) 1-14.
[6] G. Dal Maso, An Introduction to Γ-Convergence, Birkhäuser, Boston, 1993.
[7] L. Freddi, A. Morassi, R. Paroni, Thin-walled beams: the case of the rectangular cross-section, J. Elasticity 76 (2005) 45-66.
[8] L. Freddi, A. Morassi, R. Paroni, Thin-walled beams: a derivation of Vlassov theory via Γ-convergence, J. Elasticity 86 (2007) $263-296$.
[9] L. Freddi, M.G. Mora, R. Paroni, Nonlinear thin-walled beams with rectangular cross-section, part I, Math. Models Methods Appl. Sci. 22 (2012) 1150016, 34 pp .
[10] G. Friesecke, R.D. James, S. Müller, A hierarchy of plate models derived from nonlinear elasticity by Γ-convergence, Arch. Ration. Mech. Anal. 180 (2) (2006) 183-236.
[11] A. Gaudiello, R. Monneau, J. Mossino, F. Murat, A. Sili, On the junction of elastic plates and beams, C. R. Acad. Sci. Paris, Ser. I 335 (8) (2002) 717-722.
[12] R.V. Kohn, M. Vogelius, A new model for thin plates with rapidly varying thickness: II. A convergence proof, Quart. Appl. Math. 43 (1985) 1-22.
[13] A. Korn, Die eigenschwingungen eines elastichen korpers mit ruhender oberflache, Akad. Wiss. Munich, Math. Phys. Kl., Berichte 36 (1906).
[14] H. Le Dret, Convergence of displacements and stresses in linearly elastic slender rods as the thickness goes to zero, Asymptot. Anal. 10 (1995) $367-402$.
[15] S.A. Nazarov, Korn inequalities that are asymptotically exact for thin domains, Vestnik S.-Peterburg. Univ. Mat. Mekh. Astronom. 2 (1992) 19-24, 113-114.
[16] S.A. Nazarov, Korn's inequalities for junctions of spatial bodies and thin rods, Math. Methods Appl. Sci. 20 (1997) 219-243.
[17] J.A. Nitsche, On Korn's second inequality, RAIRO 15 (1981) 237-248.
[18] R. Paroni, The equations of motion of a plate with residual stress, Meccanica 41 (2006) 1-21.
[19] R. Paroni, Theory of linearly elastic residually stressed plates, Math. Mech. Solids 11 (2) (2006) 137-159.
[20] R. Paroni, G. Tomassetti, On Korn's constant for thin cylindrical domains, in preparation.
[21] R. Paroni, P. Podio-Guidugli, G. Tomassetti, The Reissner-Mindlin plate theory via Γ-convergence, C. R. Acad. Sci. Paris, Ser. I 343 (6) (2006) 437-440.
[22] R. Paroni, P. Podio-Guidugli, G. Tomassetti, A justification of the Reissner-Mindlin plate theory through variational convergence, Anal. Appl. 5 (2) (2007) 165-182.
[23] G. Riey, G. Tomassetti, A variational model for linearly elastic micropolar plate-like bodies, J. Convex Anal. 15 (4) (2008) 677-691.
[24] G. Riey, G. Tomassetti, Micropolar linearly elastic rods, Commun. Appl. Anal. 13 (4) (2009) 647-657.

[^0]: E-mail addresses: paroni@uniss.it (R. Paroni), tomassetti@ing.uniroma2.it (G. Tomassetti).
 1631-073X/\$ - see front matter © 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
 http://dx.doi.org/10.1016/j.crma.2012.09.013

