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We show that for a certain family of initial data, there exist non-unique weak solutions
to the 3D incompressible Euler equations satisfying the weak energy inequality, whereas
the weak limit of every sequence of Leray–Hopf weak solutions for the Navier–Stokes
equations, with the same initial data, and as the viscosity tends to zero, is uniquely
determined and equals the shear flow solution of the Euler equations corresponding
to this initial data. This simple example suggests that, also in more general situations,
the vanishing viscosity limit of the Navier–Stokes equations could serve as a uniqueness
criterion for weak solutions of the Euler equations.

© 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

On montre que pour une certaine famille de données initiales, il existe plusieurs solutions
faibles de l’équation d’Euler incompressible qui satisfont l’inégalité d’énergie au sens faible.
Cependant toute solution faible de l’équation d’Euler qui de surcroit est limite faible d’une
suite de solutions des équations de Navier–Stokes (au sens de Leray–Hopf) avec les mêmes
données initiales et une viscosité évanescente est déterminée de manière unique. Cet
exemple simple suggère que, de même, dans des situations plus générales, la limite pour
viscosité évanescente des solutions d’équations de Navier–Stokes puisse servir de critère
d’unicité pour les solutions faibles des équations d’Euler.

© 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Consider the incompressible Euler equations,

∂t v + v · ∇v + ∇p = 0

div v = 0, (1)
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on the d-dimensional torus T
d = (−1/2,1/2)d , d � 2. A weak solution (i.e. a solution in the sense of distributions) v ∈

C([0, T ]; L2
w(Td)) is said to be admissible if it satisfies the weak energy inequality, i.e. if

1

2

∫

Td

∣∣v(x, t)
∣∣2

dx � 1

2

∫

Td

∣∣v(x,0)
∣∣2

dx (2)

for every t ∈ [0, T ]. Here, T ∈ (0,∞] and C([0, T ]; L2
w(Td)) denotes the space of vector fields that are continuous as maps

from [0, T ] into L2(Td) with respect to the weak topology in L2.
It has been established in [4] and [11] (see Corollary 3 therein) that there exists a large set of initial data which admit

infinitely many admissible weak solutions of (1). Notice that the cited results can be adapted to the case of periodic bound-
ary conditions, considered here, in a straightforward manner. These initial data, however, are constructed in a rather abstract
way. Recently, L. Székelyhidi Jr. [10] exhibited the first example of concretely given initial data with the above mentioned
non-uniqueness property. More precisely, consider the flat vortex sheet in two dimensions given by

V 0(x) =
{ �e1 if x2 > 0

−�e1 if x2 < 0.
(3)

Obviously, the stationary solution v(·,t) = V 0(·) for all t > 0 satisfies the Cauchy problem for the Euler equations in the
weak sense. Székelyhidi’s result can be stated as follows:

Theorem 1. There exist T > 0 and infinitely many weak solutions to the Euler equations in T
2 × [0, T ] with initial data V 0 , given in

(3), and pressure zero. Among these, infinitely many conserve the kinetic energy in time, and infinitely many have strictly decreasing
energy.

Here, the kinetic energy is defined as in Eq. (2) above. Székelyhidi also observed that, clearly, any sequence of the Leray–
Hopf weak solutions of the Navier–Stokes equations, corresponding to the initial data (3), converges weak-∗ (in fact even
strongly) in L∞([0, T ]; L2(T2)) to the stationary solution of the Euler equations, as the viscosity tends to zero. Hence, being
a vanishing viscosity limit distinguishes the stationary solution from all the other weak solutions of the Euler equations
stated in Theorem 1. The aim of the present note is to prove a similar statement for the slightly more sophisticated case of
the three-dimensional shear flow.

2. 3D shear flow

In three dimensions, any initial data of the form v0(x) = (v1(x2),0, v3(x1, x2)) has the shear flow solution of the Euler
equations given by

v(x, t) = (
v1(x2),0, v3

(
x1 − tv1(x2), x2

))
(4)

(see [2] and [6] for results concerning this shear flow). Note in particular that v(x, t) is periodic in x if v0 is.
Székelyhidi’s result can now easily be extended to the case of three-dimensional shear flows as follows:

Corollary 2. Let v0(x) = (v1(x2),0, v3(x1, x2)), where

v1(x2) =
{

1 if 0 < x2 < 1/2

−1 if −1/2 < x2 < 0,

extended periodically, with basic period (−1/2,1/2), and v3 ∈ L2
x1,x2

(T2) is arbitrary. Then there exist T > 0, and infinitely many

admissible weak solutions of the 3D Euler equations on T
3 × [0, T ] with initial data v0 .

Proof. Take u(x, t) = (u1(x1, x2, t), u2(x1, x2, t)) to be a solution to the 2D vortex sheet problem as in Theorem 1. Then, the
triple

(
u1(x1, x2, t), u2(x1, x2, t), w(x1, x2, t)

)
will be a weak solution of the 3D Euler equations (with zero pressure and initial data v0) if w is a weak solution of the 2D
transport equation

∂t w + u · ∇w = 0

w(t = 0) = v3. (5)

Such a solution w ∈ L∞((0, T ); L2(T2)) exists; see Proposition II.1 in [5], which clearly holds also in the periodic setting.
Moreover, we may even assume w ∈ C((0, T ); L2

w (T2)), see Appendix A of [4]. Finally, as one can see from the proof of the
cited Proposition II.1, we have
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∥∥w(·,t)∥∥L2(T2)
� ‖v3‖L2(T2) for every t > 0

(this is due to the weak lower semi-continuity of the norm in L∞((0, T ); L2(T2))). Hence our solution (u1, u2, w) is an
admissible weak solution of the 3D Euler equations. �
Remark 3. It is not possible to deduce from (5) that ‖w(·,t)‖L2 is conserved in time: For this to hold, w would have to be a
renormalised solution in the sense of DiPerna and Lions [5], which is ruled out by the irregularity of Székelyhidi’s solutions.

Before we state and prove the main result of this note, we need an auxiliary result:

Lemma 4. Let v ∈ L2(T;R) and w0 ∈ L2(T2). Then the Cauchy problem for the linear transport equation

∂t w(x1, x2, t) + v(x2)∂x1 w(x1, x2, t) = 0

w(·,0) = w0

has a solution w ∈ C([0, T ]; L2
w (T2)), satisfying the equation in the sense of distributions, and this solution is unique in the class

L∞((0, T ); L2(T2)).

We omit the elementary proof of the lemma.

Theorem 5. Let again v0(x) = (v1(x2),0, v3(x1, x2)), where we assume v1 ∈ L2(T) and v3 ∈ L2(T2). Then, for every viscosity ν > 0,
there exists a unique Leray–Hopf weak solution of the Navier–Stokes equations with viscosity ν and initial data v0 , and these solutions
uν converge weak-∗ in L∞([0, T ]; L2(T3)) to the shear flow (4) corresponding to v0 , as ν → 0.

Proof. Let ν > 0. The intuition that the solution of Navier–Stokes should preserve the particular structure of the initial data
leads us to the ansatz

uν(x, t) = (
uν

1(x2, t),0, uν
3(x1, x2, t)

)
and pν = 0, where pν denotes the pressure. Inserting this into the Navier–Stokes equations gives the so called two-and-half
Navier–Stokes equations

∂t uν
1(x2, t) − ν∂2

x2
uν

1(x2, t) = 0,

∂t uν
3(x1, x2, t) + uν

1(x2, t)∂x1 uν
3(x1, x2, t) − ν�x1,x2 uν

3(x1, x2, t) = 0,

which is known to be globally well-posed for this kind of initial data (see, e.g., [6], and see [3] for the global existence
and uniqueness of weak solutions of the 2D Navier–Stokes equations). For completion, we observe that the first equation
is simply the one-dimensional heat equation with initial data v1(x2), whose solution obviously converges to the time-
independent function v1(x2) strongly in L2(T× [0, T ]), as the viscosity tends to zero. The second equation is an advection-
diffusion equation. By standard parabolic theory (see e.g. Theorem 5 in Section 7.1.3 of [7], which again can be adapted to
the periodic case, or the 2D Navier–Stokes theory) there exists a (unique) solution

uν
3 ∈ L2([0, T ]; H1(

T
2)) ∩ C

([0, T ]; L2(
T

2))
(recall that the initial data v3 is in L2). Hence, for every fixed ν > 0, we obtain a Leray–Hopf weak solution with the initial
data v0(x). Following ideas from [9] (see, e.g., [1] and [8] for details) one can show that this solution is unique within the
class of all 3D Leray–Hopf weak solutions; moreover, this solution depends continuously on the initial data, when the initial
data is perturbed in the L2(T3) norm (see [1]). Furthermore, since the family of unique solutions, uν , is uniformly bounded
in L∞

t L2
x , there exists a subsequence uνk which converges weak-∗ to u ∈ L∞

t L2
x , and u satisfies

u1(x2, t) = v1(x2)

u2 = 0

∂t u3(x1, x2, t) + v1(x2)∂x1 u3(x1, x2, t) = 0

u3(x1, x2,0) = v3(x1, x2). (6)

Indeed, the equation for u3 follows from uν
1 uν

3
∗
⇀ u1u3, thanks to the strong convergence of uν

1 to u1. Next, it follows from
Lemma 4 above that system (6) has a unique solution, and that this unique solution is given precisely by the shear flow (4)
(see [2]). Finally, this uniqueness implies that the whole sequence uν , and not just a subsequence, converges to the shear
flow solution (4).

Combining the corollary and the proposition, we see that among the infinitely many admissible solutions of the Euler
equations that are corresponding to the shear flow initial data, v0(x) = (v1(x2),0, v3(x1)), the shear flow solution given by
(4) has the exclusive property of being a vanishing viscosity limit. �
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