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Let D , D ′ be arbitrary domains in C
n and C

N respectively, 1 < n � N , both possibly
unbounded and let M ⊂ ∂ D , M ′ ⊂ ∂ D ′ be open pieces of the boundaries. Suppose that ∂ D
is smooth real-analytic and minimal in an open neighborhood of M̄ and ∂ D ′ is smooth real-
algebraic and minimal in an open neighborhood of M̄ ′. Let f : D → D ′ be a holomorphic
mapping. Assume that the cluster set cl f (M) does not intersect D ′. It is proved that if the
cluster set cl f (p) of a point p ∈ M contains some point q ∈ M ′ and the graph of f extends
as an analytic set to a neighborhood of (p,q) ∈C

n ×C
N , then f extends as a holomorphic

map near p.
© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soient D , D ′ deux domaines respectivement de C
n et C

N , 1 < n � N et soient M ⊂ ∂ D ,
M ′ ⊂ ∂ D ′ deux parties ouvertes des frontières. Supposons que ∂ D (resp. ∂ D ′) est lisse,
minimale et analytique réelle dans un voisinage de M̄ (resp. lisse, minimale et algébrique
réelle dans un voisinage de M̄ ′). Soit f : D → D ′ une application holomorphe telle que
l’ensemble des points limites cl f (M) n’intersecte pas D ′. Nous montrons que si l’ensemble
des points limites cl f (p) d’un point p ∈ M contient un point q ∈ M ′ et le graphe de f se
prolonge comme un ensemble analytique dans un voisinage de (p,q) ∈ C

n × C
N , alors f

se prolonge holomorphiquement dans un voisinage de p.
© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Le but principal de cette Note est de généraliser un résultat de Diederich–Pinchuk [4] quand le domaine cible est algé-
brique réel, mais de dimension supérieure. On montre le théorème suivant :

Théorème 0.1. Soient D, D ′ deux domaines respectivement de Cn et CN , 1 < n � N et soient M ⊂ ∂ D, M ′ ⊂ ∂ D ′ deux parties ouvertes
des frontières. Supposons que ∂ D (resp. ∂ D ′) est lisse, minimale et analytique réelle dans un voisinage de M̄ (resp. lisse, minimale et
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algébrique réelle dans un voisinage de M̄ ′). Soit f : D → D ′ une application holomorphe telle que l’ensemble des points limites cl f (M)

n’intersecte pas D ′ . Si cl f (p) d’un point p ∈ M contient un point q ∈ M ′ et le graphe de f se prolonge comme un ensemble analytique
dans un voisinage de (p,q) ∈C

n ×C
N , alors f se prolonge holomorphiquement dans un voisinage de p.

Démonstration abrégée. La preuve est basée sur la propagation de l’analycité des applications holomorphes à travers les
variétés de Segre et sur un résultat de Tumanov [12] qu’on utilise pour montrer que le prolongement de f comme corres-
pondance est en fait un prolongement comme application. Le prolongement du graphe comme un ensemble analytique dans
un voisinage de (p,q) assure l’existence d’un ensemble ouvert Γ ⊂ M à travers lequel f se prolonge holomorphiquement,
en plus p ∈ Γ̄ . Nous montrons d’abord le résultat quand p est un point générique. L’autre cas se déduit par induction sur la
dimension. �

Comme application du théorème précédent, nous montrons le résultat suivant :

Théorème 0.2. Soient D, D ′ deux domaines bornés, respectivement de C
n et CN , 1 < n � N. Supposons que ∂ D (resp. ∂ D ′) est lisse,

analytique réelle (resp. lisse, algébrique réelle). Soit f : D → D ′ une application holomorphe propre. Si le graphe de f se prolonge
comme un ensemble analytique dans un voisinage de (p,q) ∈ C

n × C
N pour un certain p ∈ ∂ D et q ∈ cl f (p), alors f se prolonge

holomorphiquement dans un voisinage de D̄.

Démonstration abrégée. Soit Mh l’ensemble des points du bord, où f se prolonge holomorphiquement. D’après le Théo-
rème 0.1, l’ensemble Mh est non vide. Pour montrer que Mh = ∂ D , il suffit de montrer que Mh est fermé dans ∂ D (puisque
par définition Mh est ouvert). La preuve est identique à celle dans [1]. Elle est par l’absurde et elle est basée sur la
construction d’une famille d’ellipsoïdes utilisée par Merker et Porten dans [7]. Cette construction nous ramène à étudier
le prolongement de f au voisinage des points génériques. Cette étude se déduit de la preuve du Théorème 0.1. �
1. Introduction and main results

It was proved in [4] that a proper holomorphic mapping f : D → D ′ between bounded domains in C
n with smooth

real-analytic boundaries extends holomorphically to a neighborhood of any point p ∈ ∂ D , if the graph of f extends as an
analytic set near (p,q) for some q ∈ cl f (p). The purpose of this Note is to study this result when the boundary of the target
domain is smooth real-algebraic but of higher dimension.

Theorem 1.1. Let D, D ′ be arbitrary domains in C
n and C

N respectively, 1 < n � N, both possibly unbounded and let M ⊂ ∂ D,
M ′ ⊂ ∂ D ′ be open pieces of the boundaries. Suppose that ∂ D is smooth real-analytic and minimal in an open neighborhood of M̄ and
∂ D ′ is smooth real-algebraic and minimal in an open neighborhood of M̄ ′ . Let f : D → D ′ be a holomorphic mapping. Assume that
the cluster set cl f (M) does not intersect D ′ . If the cluster set cl f (p) of a point p ∈ M contains some point q ∈ M ′ and the graph of f
extends as an analytic set to a neighborhood of (p,q) ∈C

n ×C
N , then f extends as a holomorphic map near p.

The proof of Theorem 1.1 is based on the method of analytic continuation along Segre varieties and a result of Tu-
manov [12]. Here, f is not assumed to be proper and we do not require compactness of M ′ . Also, we do not assume that
cl f (M) ⊂ M ′ . Therefore, a priori cl f (p) may contain the point at infinity or boundary points which do not lie in M ′ . In
particular, this is the main reason why our result cannot be directly derived from [11], even in the case where M ′ is strictly
pseudoconvex. Note that the assumption that f sends D to D ′ may be replaced by f : D →C

N with cl f (M) ⊂ M ′ .
As an application of Theorem 1.1, one has the following:

Theorem 1.2. Let D, D ′ be smoothly bounded domains in C
n and C

N respectively, 1 < n � N, ∂ D is real-analytic and ∂ D ′ is real-
algebraic. Let f : D → D ′ be a proper holomorphic mapping. If the graph of f extends as an analytic set to a neighborhood of (p,q) ∈
C

n ×C
N for some p ∈ ∂ D and q ∈ cl f (p), then f extends as a holomorphic map in a neighborhood of D̄.

Theorem 1.2 generalizes [4] when the boundary of the target domain is real-algebraic but of higher dimension. The alge-
braicity of D ′ allows to show that the extension is in a neighborhood of D̄ and not only near p. If f is a proper holomorphic
map as in Theorem 1.2 that extends smoothly in a neighborhood of some boundary point p, then according to [2] and [8]
f extends holomorphically across p. Hence, Theorem 1.2 implies that f extends holomorphically to a neighborhood of D̄ .
This result was proved in [11], when D ′ is strictly pseudoconvex.

We say that Γ f , the graph of f , extends as an analytic set to a neighborhood of (p,q) ∈ ∂ D × ∂ D ′ , if there exist neigh-
borhoods U � p, U ′ � q, an irreducible analytic subset A ⊂ U × U ′ of pure dimension n and a sequence {aν} ⊂ U ∩ D with
aν → p and f (aν) → q such that A contains an open piece of Γ f near (aν, f (aν)) for each ν . A hypersurface is called
minimal if it does not contain germs of complex hypersurfaces. We refer the reader to [3] for definitions and details on
Segre varieties.



M. Al-Towailb, N. Ourimi / C. R. Acad. Sci. Paris, Ser. I 350 (2012) 671–675 673
2. Proof of Theorem 1.1

Assume that p = 0, q = 0′ and 0 is not in the envelope of holomorphy of D . Let U , U ′ be small neighborhoods of 0 and
0′ respectively. We denote by A the irreducible analytic subset in U × U ′ extending the graph of f . According to [4], one
has the following:

Lemma 2.1. There exists an open set Γ ⊂ M ∩ U such that f extends holomorphically to a neighborhood of (U ∩ D) ∪ Γ , and the
graph of f near any point (z, f (z)), z ∈ Γ , is contained in A. Moreover, 0 ∈ Γ and limz→0, z∈Γ f (z) = 0′ .

Since M is real-analytic, the set Γ given by Lemma 2.1 can be constructed in a way that ∂Γ ∩ M is a real-analytic set
defined by a finite system of equations. If 0 ∈ Γ , then the proof follows from Lemma 2.1. Therefore, we may assume that
0 ∈ ∂Γ . First, we consider the case where 0 is a generic point (i.e., ∂Γ ∩ M is a smooth generic submanifold near 0).

2.1. Extension across generic submanifolds

Recall that a real submanifold M ⊂ C
n of real dimension d � n is called generic if for any z ∈ M , the complex tangent

space T c
z M to M at z has complex dimension equal to d − n. In this subsection, we consider the restriction of f on Γ (still

denoted by f ). This restriction f : Γ → M ′ is holomorphic in a neighborhood of Γ and its graph extends as an analytic
set to a neighborhood of (0,0′). In all this paragraph, we will assume that ∂Γ ∩ M is a smooth generic submanifold near 0.
Our aim here is to prove that f extends holomorphically near 0. First, we will prove the extension of f as a holomorphic
correspondence near 0. The proof is similar to the proof of Theorem 1.3 in [11] (here, M ′ is not assumed to be compact).
For the sake of completeness, we add an abbreviated proof. In view of Proposition 4.1 in [10], there exists an open subset
ω of Q 0 such that for all b ∈ ω, Q b ∩ Γ is non-empty. Furthermore, there exists a non-constant curve γ ⊂ Γ ∩ Q b with
the end point at 0. Thus, we may choose t and b such that b ∈ Q 0 and t ∈ γ ⊂ Γ ∩ Q b. For simplicity, we will also denote
by f : Ut → C

N a germ of a holomorphic mapping defined from the extension of f in some neighborhood Ut of t . Let V
be a neighborhood of Q t and define X = {(w, w ′) ∈ V ×C

N : f (Q w ∩ Ut) ⊂ Q ′
w ′ }. Since w ∈ Q t implies that t ∈ Q w , then

we may choose V such that Q w ∩ Ut is non-empty for all w ∈ V . The analytic set X allows us to extend the graph of
f as an analytic set along Q t , t ∈ Γ . In contrast with the equidimensional case, the dimension of X may be bigger than
the dimension of the graph of f and this leads us to construct another analytic set X∗ from X extending the graph of f
and with dimension equal to n (the same dimension as the graph of f ). For this construction, we will follow the ideas in
[11]. The analytic set X∗ allows us to prove that f extends as a holomorphic correspondence to a neighborhood of 0. This
extension is guaranteed to be single-valued near Levi non-degenerate points in M ′ .

According to [11], X is a complex analytic subset of V × C
N . By the invariance property of Segre varieties, X contains

the germ at t of the graph of f . From the algebraicity of M ′ , the set X extends to an analytic subset of V × P
N . Since

P
N is compact and X is closed in V × P

N , the projection π : X → V is proper. It follows that π(X) is a complex analytic
subset of V . Since V is connected, π(X) = V . Otherwise; π(X) is nowhere dense in V and therefore dimπ(X) � n − 1,
which proves that π is surjective. Since X contains the germ at t of the graph of f , we may consider only the irreducible
component of the least dimension which contains the graph of f . So, we may assume that dim(X) ≡ m � n. For ξ ∈ X ,
let Iξπ ⊂ X be the germ of the fiber π−1(π(ξ)) at ξ . For a generic point ξ ∈ X , dim(Iξπ) = m − n which is the smallest
possible dimension of the fiber. By Cartan–Remmert’s theorem (see [5]), the set Σ := {ξ ∈ X: dim(Iξπ) > m−n} is complex-
analytic and by Remmert’s proper mapping theorem, π(Σ) is a complex-analytic set in V . Furthermore, dimπ(Σ) < n − 1.
By the above considerations, we deduce that π(Σ) does not contain Q 0 ∩ V . Without loss of generality we may assume
that b /∈ π(Σ). Since the projection π is proper, then X defines a holomorphic correspondence. Denote the corresponding
multiple-valued map by F̂ . That is, F̂ := π ′ ◦ π−1 : V → P

N , where π ′ : X → P
N denotes the other coordinate projection.

We choose suitable neighborhoods, Uγ of γ (including its endpoints) and Ub of b such that Ub ∩ π(Σ) = ∅ and Q w ∩ Ub

is non-empty and connected for any w ∈ Uγ . Consider the set X∗ = {(w, w ′) ∈ Uγ × P
N : F̂ (Q w ∩ Ub) ⊂ Q ′

w ′ }. The same
arguments used for π show that the projection π∗ : X∗ → Uγ is surjective and proper. Now, define π ′∗ : X∗ → P

N and
consider the multiple-valued mapping F̂ ∗ := π ′ ∗ ◦ π∗−1 : Uγ → P

N . We will denote by ws the symmetric point of w ∈ U ,
which is the unique point in the intersection Q w ∩ {z ∈ U : ′z = ′w}. Let now Ω be a small connected neighborhood of the
path γ which connects t and 0, such that for any w ∈ Ω , the symmetric point ws belongs to Uγ , and let Q s

w denote the
connected component of Q w ∩ Uγ which contains ws . Define further Σ∗ = {z ∈ Uγ : π∗−1(z) does not have the generic
dimension}. Since Σ∗ is a complex analytic set of dimension at most n − 2, then Ω \ Σ∗ is connected. According to [11],
one has the following:

Lemma 2.2.

(a) For any point w ∈ Ω \ Σ∗ and w ′ ∈ F̂ ∗(w), we have:

F̂ ∗(Q s
w

) ⊂ Q ′
w ′ . (2.1)

(b) X∗ contains the germ of the graph of f at (t, f (t)).
(c) X∗ is a complex-analytic subset of Uγ × P

N of complex dimension n.
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From the algebraicity of M ′ the analytic subset A ⊂ U × U ′ extending the graph of f , extends to an analytic subset in
U × P

N . Denote this extension by A.

Lemma 2.3. X∗ ∩ [(U ∩ Uγ ) × P
N ] =A∩ [(U ∩ Uγ ) × P

N ].

Proof. We may assume that t is close to 0 so that Ut ⊂ U ∩ Uγ . By Lemma 2.1, f extends holomorphically across t , and the
graph of f near (t, f (t)) is contained in A. The set X∗ contains the graph of f near (t, f (t)) by Lemma 2.2. By considering
dimensions of X∗ and A, and by shrinking Ut if necessary we have: X∗|Ut×PN = A|Ut×PN . Now the proof follows from the
uniqueness theorem for analytic sets. �

Our aim now is to prove that f extends as a holomorphic correspondence to a neighborhood of 0. First, suppose that
0 /∈ Σ∗ . In view of Lemma 2.3, (0,0′) ∈ X∗ . By Lemma 2.2, (z, z′) ∈ X∗ \ π∗−1

(Σ∗) implies that F̂ ∗(Q s
z ) ⊂ Q ′

z′ . In particular,
F̂ ∗(z) ⊂ Q ′

z′ . Hence, z′ ∈ Q ′
z′ and so z′ ∈ M ′ . Then, for any z ∈ M close to 0 and any z′ close to 0′ , the inclusion (z, z′) ∈ X∗

implies z′ ∈ M ′ . Since F̂ ∗(z) is contained in a countable union of complex analytic sets and M ′ is minimal, it follows
that π∗−1

(z) is discrete near (0,0′). Therefore, we may choose U and U ′ so small such that π ′∗|X∗∩(U×U ′) ◦ π∗−1 |U is
the desired extension of f as a holomorphic correspondence. Now, suppose that 0 ∈ Σ∗ . Consider a sequence of points
w j ∈ (Γ ∩ Ω) \ Σ∗ such that w j → 0 and f (w j) → 0′ . Then F̂ ∗(Q s

w j
) ⊂ Q ′

f (w j)
. Since dim Σ∗ < dim Q 0, to prove that

F̂ ∗(Q s
0

) ⊂ Q ′
0′ , (2.2)

it suffices to prove this inclusion in a neighborhood of any point in Q s
0 \ Σ∗ . But this follows by analyticity of the fibers

of π∗ : X∗ → Uγ . Then as above π∗−1
(0) is discrete near (0,0′) and f extends to a neighborhood of 0 as a holomorphic

correspondence. We denote this correspondence by G . To prove that the extension of f is in fact an extension as a map, we
need the following result:

Theorem (A. Tumanov). (See [12].) Let N ⊂ C
N be a real-analytic (resp. a real-algebraic) minimal submanifold. Then N can be strat-

ified as N = ⋃k
j=1 N j so that each stratum N j is a real-analytic (resp. a real-algebraic) CR manifold and locally is contained in a Levi

non-degenerate real-analytic (resp. real-algebraic) hypersurface.

We denote by M ′+
s (resp. M ′−

s ) the set of strictly pseudoconvex points (resp. strictly pseudoconcave points) of M ′ . The
set of points where the Levi-form of M ′ has eigenvalues of both signs on the complex tangent space T c(M ′) to M ′ and no
zero will be denoted by M ′± and by M ′

0 we mean the set of points of M ′ where this Levi-form has at least one eigenvalue
0 on T c(M ′). We will discuss two cases. First assume that 0′ ∈ M ′+

s ∪ M ′−
s ∪ M ′± . We may shrink U ′ so that the Segre

map λ′ : U ′ → {Q w ′ , w ′ ∈ U ′} is one to one. Let w ′ ∈ G(w) for w ∈ M ∩ U . In view of (2.1) and (2.2), G(Q w) ⊂ Q ′
w ′ . In

particular, w ′ ∈ Q ′
w ′ and hence G(M ∩ U ) ⊂ M ′ ∩ U ′ . By using Corollary 4.2 of [3] and the fact that λ′ is one to one, we may

show that the correspondence G splits into several holomorphic maps, one of which extends the map f . Secondly, assume
that 0′ ∈ M ′

0. By Tumanov’s theorem, M ′ = ⋃k
j=1 N j and each N j is locally contained in a Levi non-degenerate real-algebraic

hypersurface M̃ j . The extension of f as a correspondence near 0 implies that f extends continuously to U0 ∩ M , for some
neighborhood U0 ⊂ U of 0. Let j0 be the largest index such that 0′ ∈ N j0 . Using the continuity of f and by shrinking U0 if
necessary, we may assume that f (U0 ∩ M) ⊂ M̃ j0 . By [6], the hypersurface M̃ j0 is minimal (since, it is Levi non-degenerate).
Hence as above, we may show that f extends as a holomorphic correspondence G̃ near 0 and we may choose U0 and U ′
so that G̃(U0 ∩ M) ⊂ U ′ ∩ M̃ j0 . Now as in the first case, we may show that f extends as a holomorphic map near 0. �
Remark. In [11], Shafikov and Verma proved that if M and M ′ are hypersurfaces as in Theorem 1.1, M ′ is compact, Γ ⊂ M
is a connected open set and f is a holomorphic map in a neighborhood of Γ with f (Γ ) ⊂ M ′ , then f extends as a
holomorphic correspondence near any generic point in ∂Γ ∩ M . So, as above we may use the result of Tumanov to prove
that this extension is in fact an extension as a map.

3. Conclusion of the proof of Theorem 1.1

First, suppose that 0 ∈ Reg(∂Γ ). Then near 0, ∂Γ ∩ M is a generic submanifold of dimension 2n −2 and the proof follows
from Section 2.1. Suppose now that 0 ∈ Sing(∂Γ ). Since ∂Γ is a real-analytic set defined by a finite system of equations, it
follows from [9] that there exists a real-analytic set Γ1 of real dimension at most 2n − 3, which is also defined by a finite
system of equations such that Sing(∂Γ ) ⊂ Γ1. If 0 ∈ Reg(Γ1), then we may shrink U if necessary so that U ∩Γ1 is contained
in some generic submanifold Γ̃1 of M , of dimension 2n − 2, and we may show that f extends holomorphically near 0 by
repeating the argument above. The singular part of Γ1 is now contained in a real-analytic set of dimension 2n − 4, then if
0 ∈ Sing(Γ1), by induction on dimension we may complete the proof. �
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4. Proof of Theorem 1.2

Let Mh := {z ∈ ∂ D: f extends holomorphically to a neighborhood of z}. The set Mh is open by construction and non-
empty by Theorem 1.1. To prove the theorem, it suffices to show that Mh is closed in ∂ D . By contradiction, assume that
Mh 
= Mh , and let q ∈ ∂Mh . Following the ideas developed in [1] and [11] there exists a CR-curve γ passing through q and
entering Mh . After shortening γ , we may assume that γ is a smoothly embedded segment. Then γ can be described as
a part of an integral curve of some non-vanishing smooth CR-vector field L near q. By integrating L we obtain a smooth
coordinate system (t, s) ∈ R×R

2n−2 on ∂ D such that for any fixed s0 the segments (t, s0) are contained in the trajectories
of L. We may assume that (0,0) ∈ γ ∩ Mh sufficiently close to q. For ε > 0 and τ > 0, define the family of ellipsoids on ∂ D
centered at 0 by Eτ = {(t, s): |t|2/τ + |s|2 < ε}, where ε > 0 is so small that for some τ0 > 0 the ellipsoid Eτ0 is compactly
contained in Mh . Observe that every ∂ Eτ is transverse to the trajectories of L out off the set Λ := {(0, s): |s|2 = ε}. So,
∂ Eτ is generic at every point except the points of Λ. Note that Λ is contained in Mh . Let τ1 be the smallest positive
number such that f does not extend holomorphically to some point b ∈ ∂ Eτ1 . Note that τ1 > τ0 and b may be different
from q. Near b, ∂ Eτ1 is a smooth generic manifold of ∂ D; since the non-generic points of ∂ Eτ1 are contained in Λ, which
is contained in Mh . Then, we are in the situation of the Section 2.1. Consequently, f extends as a holomorphic map to a
neighborhood of b. This contradiction finishes the proof of Theorem 1.2. �
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