

Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Complex Analysis

Analytic sets extending the graphs of holomorphic mappings between domains of different dimensions $^{\updownarrow}$

Ensembles analytiques prolongeant les graphes d'applications holomorphes entre domaines de dimensions différentes

Maryam Al-Towailb, Nabil Ourimi

Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

ARTICLE INFO

Article history: Received 15 May 2012 Accepted after revision 29 August 2012 Available online 15 September 2012

Presented by the Editorial Board

ABSTRACT

Let D, D' be arbitrary domains in \mathbb{C}^n and \mathbb{C}^N respectively, $1 < n \leq N$, both possibly unbounded and let $M \subset \partial D$, $M' \subset \partial D'$ be open pieces of the boundaries. Suppose that ∂D is smooth real-analytic and minimal in an open neighborhood of \overline{M} and $\partial D'$ is smooth realalgebraic and minimal in an open neighborhood of $\overline{M'}$. Let $f : D \to D'$ be a holomorphic mapping. Assume that the cluster set $cl_f(M)$ does not intersect D'. It is proved that if the cluster set $cl_f(p)$ of a point $p \in M$ contains some point $q \in M'$ and the graph of f extends as an analytic set to a neighborhood of $(p, q) \in \mathbb{C}^n \times \mathbb{C}^N$, then f extends as a holomorphic map near p.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Soient D, D' deux domaines respectivement de \mathbb{C}^n et \mathbb{C}^N , $1 < n \leq N$ et soient $M \subset \partial D$, $M' \subset \partial D'$ deux parties ouvertes des frontières. Supposons que ∂D (resp. $\partial D'$) est lisse, minimale et analytique réelle dans un voisinage de \overline{M} (resp. lisse, minimale et algébrique réelle dans un voisinage de $\overline{M'}$). Soit $f: D \to D'$ une application holomorphe telle que l'ensemble des points limites $cl_f(M)$ n'intersecte pas D'. Nous montrons que si l'ensemble des points limites $cl_f(p)$ d'un point $p \in M$ contient un point $q \in M'$ et le graphe de f se prolonge comme un ensemble analytique dans un voisinage de $(p,q) \in \mathbb{C}^n \times \mathbb{C}^N$, alors f se prolonge holomorphiquement dans un voisinage de p.

@ 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Le but principal de cette Note est de généraliser un résultat de Diederich–Pinchuk [4] quand le domaine cible est algébrique réel, mais de dimension supérieure. On montre le théorème suivant :

Théorème 0.1. Soient D, D' deux domaines respectivement de \mathbb{C}^n et \mathbb{C}^N , $1 < n \leq N$ et soient $M \subset \partial D$, $M' \subset \partial D'$ deux parties ouvertes des frontières. Supposons que ∂D (resp. $\partial D'$) est lisse, minimale et analytique réelle dans un voisinage de \overline{M} (resp. lisse, minimale et

^{*} The project was supported by the Research Center, College of Science, King Saud University.

E-mail addresses: mtowaileb@ksu.edu.sa (M. Al-Towailb), ourimi@ksu.edu.sa (N. Ourimi).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter \odot 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.crma.2012.08.008

algébrique réelle dans un voisinage de \overline{M}'). Soit $f: D \to D'$ une application holomorphe telle que l'ensemble des points limites $cl_f(M)$ n'intersecte pas D'. Si $cl_f(p)$ d'un point $p \in M$ contient un point $q \in M'$ et le graphe de f se prolonge comme un ensemble analytique dans un voisinage de $(p,q) \in \mathbb{C}^n \times \mathbb{C}^N$, alors f se prolonge holomorphiquement dans un voisinage de p.

Démonstration abrégée. La preuve est basée sur la propagation de l'analycité des applications holomorphes à travers les variétés de Segre et sur un résultat de Tumanov [12] qu'on utilise pour montrer que le prolongement de *f* comme correspondance est en fait un prolongement comme application. Le prolongement du graphe comme un ensemble analytique dans un voisinage de (p, q) assure l'existence d'un ensemble ouvert $\Gamma \subset M$ à travers lequel *f* se prolonge holomorphiquement, en plus $p \in \overline{\Gamma}$. Nous montrons d'abord le résultat quand *p* est un point générique. L'autre cas se déduit par induction sur la dimension. \Box

Comme application du théorème précédent, nous montrons le résultat suivant :

Théorème 0.2. Soient D, D' deux domaines bornés, respectivement de \mathbb{C}^n et \mathbb{C}^N , $1 < n \le N$. Supposons que ∂D (resp. $\partial D'$) est lisse, analytique réelle (resp. lisse, algébrique réelle). Soit $f : D \to D'$ une application holomorphe propre. Si le graphe de f se prolonge comme un ensemble analytique dans un voisinage de $(p,q) \in \mathbb{C}^n \times \mathbb{C}^N$ pour un certain $p \in \partial D$ et $q \in cl_f(p)$, alors f se prolonge holomorphiquement dans un voisinage de \overline{D} .

Démonstration abrégée. Soit M_h l'ensemble des points du bord, où f se prolonge holomorphiquement. D'après le Théorème 0.1, l'ensemble M_h est non vide. Pour montrer que $M_h = \partial D$, il suffit de montrer que M_h est fermé dans ∂D (puisque par définition M_h est ouvert). La preuve est identique à celle dans [1]. Elle est par l'absurde et elle est basée sur la construction d'une famille d'ellipsoïdes utilisée par Merker et Porten dans [7]. Cette construction nous ramène à étudier le prolongement de f au voisinage des points génériques. Cette étude se déduit de la preuve du Théorème 0.1. \Box

1. Introduction and main results

It was proved in [4] that a proper holomorphic mapping $f: D \to D'$ between bounded domains in \mathbb{C}^n with smooth real-analytic boundaries extends holomorphically to a neighborhood of any point $p \in \partial D$, if the graph of f extends as an analytic set near (p,q) for some $q \in cl_f(p)$. The purpose of this Note is to study this result when the boundary of the target domain is smooth real-algebraic but of higher dimension.

Theorem 1.1. Let D, D' be arbitrary domains in \mathbb{C}^n and \mathbb{C}^N respectively, $1 < n \le N$, both possibly unbounded and let $M \subset \partial D$, $M' \subset \partial D'$ be open pieces of the boundaries. Suppose that ∂D is smooth real-analytic and minimal in an open neighborhood of \overline{M} and $\partial D'$ is smooth real-algebraic and minimal in an open neighborhood of $\overline{M'}$. Let $f : D \to D'$ be a holomorphic mapping. Assume that the cluster set $cl_f(M)$ does not intersect D'. If the cluster set $cl_f(p)$ of a point $p \in M$ contains some point $q \in M'$ and the graph of f extends as an analytic set to a neighborhood of $(p,q) \in \mathbb{C}^n \times \mathbb{C}^N$, then f extends as a holomorphic map near p.

The proof of Theorem 1.1 is based on the method of analytic continuation along Segre varieties and a result of Tumanov [12]. Here, f is not assumed to be proper and we do not require compactness of M'. Also, we do not assume that $cl_f(M) \subset M'$. Therefore, a priori $cl_f(p)$ may contain the point at infinity or boundary points which do not lie in M'. In particular, this is the main reason why our result cannot be directly derived from [11], even in the case where M' is strictly pseudoconvex. Note that the assumption that f sends D to D' may be replaced by $f: D \to \mathbb{C}^N$ with $cl_f(M) \subset M'$.

As an application of Theorem 1.1, one has the following:

Theorem 1.2. Let D, D' be smoothly bounded domains in \mathbb{C}^n and \mathbb{C}^N respectively, $1 < n \le N$, ∂D is real-analytic and $\partial D'$ is real-algebraic. Let $f : D \to D'$ be a proper holomorphic mapping. If the graph of f extends as an analytic set to a neighborhood of $(p, q) \in \mathbb{C}^n \times \mathbb{C}^N$ for some $p \in \partial D$ and $q \in cl_f(p)$, then f extends as a holomorphic map in a neighborhood of \overline{D} .

Theorem 1.2 generalizes [4] when the boundary of the target domain is real-algebraic but of higher dimension. The algebraicity of D' allows to show that the extension is in a neighborhood of \overline{D} and not only near p. If f is a proper holomorphic map as in Theorem 1.2 that extends smoothly in a neighborhood of some boundary point p, then according to [2] and [8] f extends holomorphically across p. Hence, Theorem 1.2 implies that f extends holomorphically to a neighborhood of \overline{D} . This result was proved in [11], when D' is strictly pseudoconvex.

We say that Γ_f , the graph of f, extends as an analytic set to a neighborhood of $(p, q) \in \partial D \times \partial D'$, if there exist neighborhoods $U \ni p$, $U' \ni q$, an irreducible analytic subset $\mathcal{A} \subset U \times U'$ of pure dimension n and a sequence $\{a_{\nu}\} \subset U \cap D$ with $a_{\nu} \to p$ and $f(a_{\nu}) \to q$ such that \mathcal{A} contains an open piece of Γ_f near $(a_{\nu}, f(a_{\nu}))$ for each ν . A hypersurface is called minimal if it does not contain germs of complex hypersurfaces. We refer the reader to [3] for definitions and details on Segre varieties.

2. Proof of Theorem 1.1

Assume that p = 0, q = 0' and 0 is not in the envelope of holomorphy of *D*. Let *U*, *U'* be small neighborhoods of 0 and 0' respectively. We denote by A the irreducible analytic subset in $U \times U'$ extending the graph of *f*. According to [4], one has the following:

Lemma 2.1. There exists an open set $\Gamma \subset M \cap U$ such that f extends holomorphically to a neighborhood of $(U \cap D) \cup \Gamma$, and the graph of f near any point $(z, f(z)), z \in \Gamma$, is contained in \mathcal{A} . Moreover, $0 \in \overline{\Gamma}$ and $\lim_{z \to 0, z \in \Gamma} f(z) = 0'$.

Since *M* is real-analytic, the set Γ given by Lemma 2.1 can be constructed in a way that $\partial \Gamma \cap M$ is a real-analytic set defined by a finite system of equations. If $0 \in \Gamma$, then the proof follows from Lemma 2.1. Therefore, we may assume that $0 \in \partial \Gamma$. First, we consider the case where 0 is a generic point (i.e., $\partial \Gamma \cap M$ is a smooth generic submanifold near 0).

2.1. Extension across generic submanifolds

Recall that a real submanifold $M \subset \mathbb{C}^n$ of real dimension $d \ge n$ is called generic if for any $z \in M$, the complex tangent space $T_z^c M$ to M at z has complex dimension equal to d - n. In this subsection, we consider the restriction of f on Γ (still denoted by f). This restriction $f : \Gamma \to M'$ is holomorphic in a neighborhood of Γ and its graph extends as an analytic set to a neighborhood of (0, 0'). In all this paragraph, we will assume that $\partial \Gamma \cap M$ is a smooth generic submanifold near 0. Our aim here is to prove that f extends holomorphically near 0. First, we will prove the extension of f as a holomorphic correspondence near 0. The proof is similar to the proof of Theorem 1.3 in [11] (here, M' is not assumed to be compact). For the sake of completeness, we add an abbreviated proof. In view of Proposition 4.1 in [10], there exists an open subset ω of Q_0 such that for all $b \in \omega$, $Q_b \cap \Gamma$ is non-empty. Furthermore, there exists a non-constant curve $\gamma \subset \Gamma \cap Q_b$ with the end point at 0. Thus, we may choose t and b such that $b \in Q_0$ and $t \in \gamma \subset \Gamma \cap Q_b$. For simplicity, we will also denote by $f : U_t \to \mathbb{C}^N$ a germ of a holomorphic mapping defined from the extension of f in some neighborhood U_t of t. Let V be a neighborhood of Q_t and define $X = \{(w, w') \in V \times \mathbb{C}^N : f(Q_w \cap U_t) \subset Q'_{w'}\}$. Since $w \in Q_t$ implies that $t \in Q_w$, then we may choose V such that $Q_w \cap U_t$ is non-empty for all $w \in V$. The analytic set X allows us to extend the graph of f and with dimension equal to n (the same dimension as the graph of f). For this construction, we will follow the ideas in [11]. The analytic set X^* allows us to prove that f extends as a holomorphic correspondence to a neighborhood of 0. This extending the graph of 0. This construction, we will follow the ideas in [11]. The analytic set X^* allows us to prove that f extends as a holomorph

According to [11], X is a complex analytic subset of $V \times \mathbb{C}^N$. By the invariance property of Segre varieties, X contains the germ at t of the graph of f. From the algebraicity of M', the set X extends to an analytic subset of $V \times \mathbb{P}^N$. Since \mathbb{P}^N is compact and X is closed in $V \times \mathbb{P}^N$, the projection $\pi : X \to V$ is proper. It follows that $\pi(X)$ is a complex analytic subset of V. Since V is connected, $\pi(X) = V$. Otherwise; $\pi(X)$ is nowhere dense in V and therefore dim $\pi(X) \leq n-1$, which proves that π is surjective. Since X contains the germ at t of the graph of f, we may consider only the irreducible component of the least dimension which contains the graph of f. So, we may assume that $\dim(X) \equiv m \ge n$. For $\xi \in X$, let $I_{\xi}\pi \subset X$ be the germ of the fiber $\pi^{-1}(\pi(\xi))$ at ξ . For a generic point $\xi \in X$, dim $(I_{\xi}\pi) = m - n$ which is the smallest possible dimension of the fiber. By Cartan–Remmert's theorem (see [5]), the set $\Sigma := \{\xi \in X: \dim(I_{\xi}\pi) > m - n\}$ is complexanalytic and by Remmert's proper mapping theorem, $\pi(\Sigma)$ is a complex-analytic set in V. Furthermore, dim $\pi(\Sigma) < n-1$. By the above considerations, we deduce that $\pi(\Sigma)$ does not contain $Q_0 \cap V$. Without loss of generality we may assume that $b \notin \pi(\Sigma)$. Since the projection π is proper, then X defines a holomorphic correspondence. Denote the corresponding multiple-valued map by \widehat{F} . That is, $\widehat{F} := \pi' \circ \pi^{-1} : V \to \mathbb{P}^N$, where $\pi' : X \to \mathbb{P}^N$ denotes the other coordinate projection. We choose suitable neighborhoods, U_{γ} of γ (including its endpoints) and U_b of b such that $U_b \cap \pi(\Sigma) = \emptyset$ and $Q_w \cap U_b$ is non-empty and connected for any $w \in U_{\gamma}$. Consider the set $X^* = \{(w, w') \in U_{\gamma} \times \mathbb{P}^N : \widehat{F}(Q_w \cap U_b) \subset Q'_{w'}\}$. The same arguments used for π show that the projection $\pi^* : X^* \to U_{\gamma}$ is surjective and proper. Now, define $\pi'^* : X^* \to \mathbb{P}^N$ and consider the multiple-valued mapping $\widehat{F^*} := \pi'^* \circ \pi^{*-1} : U_{\gamma} \to \mathbb{P}^N$. We will denote by w^s the symmetric point of $w \in U$, which is the unique point in the intersection $Q_w \cap \{z \in U: z = w\}$. Let now Ω be a small connected neighborhood of the path γ which connects t and 0, such that for any $w \in \Omega$, the symmetric point w^s belongs to U_{γ} , and let Q_w^s denote the connected component of $Q_w \cap U_v$ which contains w^s . Define further $\Sigma^* = \{z \in U_v: \pi^{*-1}(z) \text{ does not have the generic}$ dimension). Since Σ^* is a complex analytic set of dimension at most n-2, then $\Omega \setminus \Sigma^*$ is connected. According to [11], one has the following:

Lemma 2.2.

(a) For any point $w \in \Omega \setminus \Sigma^*$ and $w' \in \widehat{F^*}(w)$, we have:

$$\widehat{F^*}(Q^s_w) \subset Q'_{w'}$$

- (b) X^* contains the germ of the graph of f at (t, f(t)).
- (c) X^* is a complex-analytic subset of $U_{\gamma} \times \mathbb{P}^N$ of complex dimension *n*.

(2.1)

From the algebraicity of M' the analytic subset $\mathcal{A} \subset U \times U'$ extending the graph of f, extends to an analytic subset in $U \times \mathbb{P}^N$. Denote this extension by $\overline{\mathcal{A}}$.

Lemma 2.3. $X^* \cap [(U \cap U_{\gamma}) \times \mathbb{P}^N] = \overline{\mathcal{A}} \cap [(U \cap U_{\gamma}) \times \mathbb{P}^N].$

Proof. We may assume that *t* is close to 0 so that $U_t \subset U \cap U_{\gamma}$. By Lemma 2.1, *f* extends holomorphically across *t*, and the graph of *f* near (t, f(t)) is contained in \overline{A} . The set X^* contains the graph of *f* near (t, f(t)) by Lemma 2.2. By considering dimensions of X^* and \overline{A} , and by shrinking U_t if necessary we have: $X^*|_{U_t \times \mathbb{P}^N} = \overline{A}|_{U_t \times \mathbb{P}^N}$. Now the proof follows from the uniqueness theorem for analytic sets. \Box

Our aim now is to prove that f extends as a holomorphic correspondence to a neighborhood of 0. First, suppose that $0 \notin \Sigma^*$. In view of Lemma 2.3, $(0, 0') \in X^*$. By Lemma 2.2, $(z, z') \in X^* \setminus \pi^{*^{-1}}(\Sigma^*)$ implies that $\widehat{F^*}(Q_z^s) \subset Q'_{z'}$. In particular, $\widehat{F^*}(z) \subset Q'_{z'}$. Hence, $z' \in Q'_{z'}$ and so $z' \in M'$. Then, for any $z \in M$ close to 0 and any z' close to 0', the inclusion $(z, z') \in X^*$ implies $z' \in M'$. Since $\widehat{F^*}(z)$ is contained in a countable union of complex analytic sets and M' is minimal, it follows that $\pi^{*^{-1}}(z)$ is discrete near (0, 0'). Therefore, we may choose U and U' so small such that $\pi'^*|_{X^* \cap (U \times U')} \circ \pi^{*^{-1}}|_U$ is the desired extension of f as a holomorphic correspondence. Now, suppose that $0 \in \Sigma^*$. Consider a sequence of points $w_j \in (\Gamma \cap \Omega) \setminus \Sigma^*$ such that $w_j \to 0$ and $f(w_j) \to 0'$. Then $\widehat{F^*}(Q_{w_j}^s) \subset Q'_{f(w_j)}$. Since dim $\Sigma^* < \dim Q_0$, to prove that

$$\widehat{F^*}(Q_0^s) \subset Q_{0'}^{\prime},\tag{2.2}$$

it suffices to prove this inclusion in a neighborhood of any point in $Q_0^s \setminus \Sigma^*$. But this follows by analyticity of the fibers of $\pi^* : X^* \to U_{\gamma}$. Then as above ${\pi^*}^{-1}(0)$ is discrete near (0, 0') and f extends to a neighborhood of 0 as a holomorphic correspondence. We denote this correspondence by G. To prove that the extension of f is in fact an extension as a map, we need the following result:

Theorem (A. Tumanov). (See [12].) Let $N \subset \mathbb{C}^N$ be a real-analytic (resp. a real-algebraic) minimal submanifold. Then N can be stratified as $N = \bigcup_{j=1}^k N_j$ so that each stratum N_j is a real-analytic (resp. a real-algebraic) CR manifold and locally is contained in a Levi non-degenerate real-analytic (resp. real-algebraic) hypersurface.

We denote by M'_{s}^{+} (resp. M'_{s}^{-}) the set of strictly pseudoconvex points (resp. strictly pseudoconcave points) of M'. The set of points where the Levi-form of M' has eigenvalues of both signs on the complex tangent space $T^{c}(M')$ to M' and no zero will be denoted by M'^{\pm} and by M'_{0} we mean the set of points of M' where this Levi-form has at least one eigenvalue 0 on $T^{c}(M')$. We will discuss two cases. First assume that $0' \in M'_{s}^{+} \cup M'_{s}^{-} \cup M'^{\pm}$. We may shrink U' so that the Segre map $\lambda': U' \to \{Q_{w'}, w' \in U'\}$ is one to one. Let $w' \in G(w)$ for $w \in M \cap U$. In view of (2.1) and (2.2), $G(Q_w) \subset Q'_{w'}$. In particular, $w' \in Q'_{w'}$ and hence $G(M \cap U) \subset M' \cap U'$. By using Corollary 4.2 of [3] and the fact that λ' is one to one, we may show that the correspondence G splits into several holomorphic maps, one of which extends the map f. Secondly, assume that $0' \in M'_{0}$. By Tumanov's theorem, $M' = \bigcup_{j=1}^{k} N_{j}$ and each N_{j} is locally contained in a Levi non-degenerate real-algebraic hypersurface \tilde{M}_{j} . The extension of f as a correspondence near 0 implies that f extends continuously to $U_{0} \cap M$, for some neighborhood $U_{0} \subset U$ of 0. Let j_{0} be the largest index such that $0' \in N_{j_{0}}$. Using the continuity of f and by shrinking U_{0} if necessary, we may assume that $f(U_{0} \cap M) \subset \tilde{M}_{j_{0}}$. By [6], the hypersurface $\tilde{M}_{j_{0}}$ is minimal (since, it is Levi non-degenerate). Hence as above, we may show that f extends as a holomorphic correspondence \tilde{G} near 0 and we may choose U_{0} and U' so that $\tilde{G}(U_{0} \cap M) \subset U' \cap \tilde{M}_{j_{0}}$. Now as in the first case, we may show that f extends as a holomorphic map near 0. \Box

Remark. In [11], Shafikov and Verma proved that if M and M' are hypersurfaces as in Theorem 1.1, M' is compact, $\Gamma \subset M$ is a connected open set and f is a holomorphic map in a neighborhood of Γ with $f(\Gamma) \subset M'$, then f extends as a holomorphic correspondence near any generic point in $\partial \Gamma \cap M$. So, as above we may use the result of Tumanov to prove that this extension is in fact an extension as a map.

3. Conclusion of the proof of Theorem 1.1

First, suppose that $0 \in \text{Reg}(\partial \Gamma)$. Then near $0, \partial \Gamma \cap M$ is a generic submanifold of dimension 2n - 2 and the proof follows from Section 2.1. Suppose now that $0 \in \text{Sing}(\partial \Gamma)$. Since $\partial \Gamma$ is a real-analytic set defined by a finite system of equations, it follows from [9] that there exists a real-analytic set Γ_1 of real dimension at most 2n - 3, which is also defined by a finite system of equations such that $\text{Sing}(\partial \Gamma) \subset \Gamma_1$. If $0 \in \text{Reg}(\Gamma_1)$, then we may shrink U if necessary so that $U \cap \Gamma_1$ is contained in some generic submanifold $\widetilde{\Gamma_1}$ of M, of dimension 2n - 2, and we may show that f extends holomorphically near 0 by repeating the argument above. The singular part of Γ_1 is now contained in a real-analytic set of dimension 2n - 4, then if $0 \in \text{Sing}(\Gamma_1)$, by induction on dimension we may complete the proof. \Box

4. Proof of Theorem 1.2

Let $M_h := \{z \in \partial D: f \text{ extends holomorphically to a neighborhood of } z\}$. The set M_h is open by construction and nonempty by Theorem 1.1. To prove the theorem, it suffices to show that M_h is closed in ∂D . By contradiction, assume that $\overline{M_h} \neq M_h$, and let $q \in \partial M_h$. Following the ideas developed in [1] and [11] there exists a CR-curve γ passing through q and entering M_h . After shortening γ , we may assume that γ is a smoothly embedded segment. Then γ can be described as a part of an integral curve of some non-vanishing smooth CR-vector field L near q. By integrating L we obtain a smooth coordinate system $(t, s) \in \mathbb{R} \times \mathbb{R}^{2n-2}$ on ∂D such that for any fixed s_0 the segments (t, s_0) are contained in the trajectories of L. We may assume that $(0, 0) \in \gamma \cap M_h$ sufficiently close to q. For $\epsilon > 0$ and $\tau > 0$, define the family of ellipsoids on ∂D centered at 0 by $E_{\tau} = \{(t, s): |t|^2/\tau + |s|^2 < \epsilon\}$, where $\epsilon > 0$ is so small that for some $\tau_0 > 0$ the ellipsoid E_{τ_0} is compactly contained in M_h . Observe that every ∂E_{τ} is transverse to the trajectories of L out off the set $\Lambda := \{(0, s): |s|^2 = \epsilon\}$. So, ∂E_{τ} is generic at every point except the points of Λ . Note that Λ is contained in M_h . Let τ_1 be the smallest positive number such that f does not extend holomorphically to some point $b \in \partial E_{\tau_1}$. Note that $\tau_1 > \tau_0$ and b may be different from q. Near b, ∂E_{τ_1} is a smooth generic manifold of ∂D ; since the non-generic points of ∂E_{τ_1} are contained in Λ , which is contained in M_h . Then, we are in the situation of the Section 2.1. Consequently, f extends as a holomorphic map to a neighborhood of b. This contradiction finishes the proof of Theorem 1.2. \Box

Acknowledgements

The authors are grateful to the referee's comments which improved the paper greatly.

References

- [1] B. Ayed, N. Ourimi, Analytic continuation of holomorphic mappings, C. R. Acad. Sci. Paris, Ser. I 347 (2009) 1011–1016.
- [2] B. Coupet, S. Damour, J. Merker, A. Sukhov, Sur l'analyticité des applications CR lisses à valeurs dans un ensemble algébrique réel, C. R. Acad. Sci. Paris, Ser. I 334 (11) (2002) 953–956.
- [3] K. Diederich, S. Pinchuk, Proper holomorphic maps in dimension 2 extend, Indiana Univ. Math. J. 44 (1995) 1089–1126.
- [4] K. Diederich, S. Pinchuk, Analytic sets extending the graphs of holomorphic mappings, J. Geom. Anal. 14 (2) (2004) 231-239.
- [5] S. Lojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, Basel, 1991.
- [6] J. Merker, On the local geometry of generic submanifolds of \mathbb{C}^n and the analytic reflection principle (part 1), J. Math. Sci. 125 (6) (2005) 751–824.
- [7] J. Merker, E. Porten, On wedge extendability of CR-meromorphic functions, Math. Z. 241 (2002) 485-512.
- [8] F. Meylan, N. Mir, D. Zaitsev, Holomorphic extension of smooth CR-mappings between real-analytic and real-algebraic CR-manifolds, Asian J. Math. 7 (4) (2003) 503–519.
- [9] R. Narasimhan, Introduction to the Theory of Analytic Spaces, Lecture Notes in Math., vol. 25, Springer-Verlag, New York, 1966.
- [10] R. Shafikov, Analytic continuation of germs of holomorphic mappings between real hypersurfaces in \mathbb{C}^n , Michigan Math. J. 47 (1) (2001) 133–149.
- [11] R. Shafikov, K. Verma, Extension of holomorphic maps between real hypersurfaces of different dimensions, Ann. Inst. Fourier, Grenoble 57 (6) (2007) 2063–2080.
- [12] A. Tumanov, Foliations by complex curves and the geometry of real surfaces of finite type, Math. Z. 240 (2002) 385-388.