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Because of their capability to preserve steady states, well-balanced schemes for Shallow
Water equations are becoming popular. Among them, the hydrostatic reconstruction
proposed in Audusse et al. (2004) [1], coupled with a positive numerical flux, allows to
verify important mathematical and physical properties like the positivity of the water
height and, thus, to avoid instabilities when dealing with dry zones. In this note, we prove
that this method exhibits an abnormal behavior for some combinations of slope, mesh size
and water height.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

De par leur capacité à préserver les états d’équilibre, les schémas équilibres connaissent
actuellement un fort développement dans la résolution des équations de Saint-Venant. En
particulier, la reconstruction hydrostatique proposée dans Audusse et al. (2004) [1], couplée
à un flux numérique positif, permet de garantir certaines propriétés comme la positivité
de la hauteur d’eau et, donc, d’éviter certaines instabilités pour traiter les zones sèches.
Dans cette note, nous montrons que cette méthode présente un défaut pour certaines
combinaisons de pente, taille de maillage et hauteur d’eau.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Les équations de Saint-Venant (1) posent des difficultés numériques spécifiques : préservation des équilibres stationnaires
(flaques d’eau, lacs) et de la positivité de la hauteur d’eau. La reconstruction hydrostatique, introduite dans [1,4], s’est
imposée comme une méthode particulièrement adaptée. Elle fait partie de la classe des schémas dits équilibrés (well-
balanced). Partant d’une méthode de volumes finis (2), dont le flux numérique F est adapté au système sans topographie,
on reconstruit les variables u, h, h + z afin de préserver les équilibres. Cette méthode est appliquée le cas échéant à des
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variables déjà reconstruites afin d’augmenter l’ordre de convergence. La mise en œuvre complète de ce schéma dans le cas
d’une reconstruction linéaire de type MUSCL est donnée par (3)–(7).

Une reformulation de la reconstruction hydrostatique (8) met en évidence un comportement anormal pour certaines
combinaisons de pente, maillage et hauteur d’eau. Plus précisément, il est montré que le schéma surestime la hauteur d’eau
dans les régions où la relation (9) est vérifiée.

Ce défaut est illustré par une série de tests numériques sur une solution analytique (voir 3). Il s’avère particulièrement
spectaculaire à l’ordre 1, où la méthode calcule une même pente apparente pour différentes valeurs effectives (Fig. 2(left)),
mais il reste observable à l’ordre 2 (Fig. 2(right)).

1. Introduction

Derived from Navier–Stokes equations, Shallow Water equations describe the water flow properties as follows

∂th + ∂x(hu) = 0, ∂t(hu) + ∂x
(
hu2 + gh2/2

) = −gh∂xz, (1)

where the unknowns are the water height h(t, x), the velocity u(t, x), and the topography z(x) is a given function. In what
follows, we note the discharge q = hu, the vector of conservative variables U = (h hu)t and the flux F (U ) = (hu gh2/2 +
hu2)t . The steady state of a lake at rest, or a puddle, (h + z = C st and u = q = 0) is a particular solution to (1). Since [2],
it is well known that the topography source term needs a special treatment in order to preserve at least this equilibrium.
Such schemes are said to be well-balanced (since [9]).

In the following, we present briefly the so-called hydrostatic reconstruction method, which permits, when coupled to a
positive numerical flux, to obtain a family of well-balanced schemes that can preserve the water height nonnegativity and
deal with dry zones. We show that this method, presented in [1,4] and widely used, fails for some combinations of slope,
mesh size and water height. We give the criteria that ensures the accuracy of the results.

2. The numerical method

The hydrostatic reconstruction follows the general principle of reconstruction methods. We start from a first order finite
volume scheme for the homogeneous form of system (1): choosing a numerical flux F(U L, U R) (e.g. Rusanov, HLL, VFRoe-ncv,
kinetic), a finite volume scheme takes the general form

U∗
i = Un

i − �t

�x

[
F(Ui, Ui+1) − F(Ui−1, Ui)

]
, (2)

where �t is the time step and �x the space step. Now the idea is to modify this scheme by applying the flux to recon-
structed variables. Reconstruction can be used to get higher order schemes, in that case higher order in time is achieved
through TVD–Runge–Kutta methods. The aim of the hydrostatic reconstruction, which is described in the next section, is to
be well-balanced, in the sense that it is designed to preserve at least steady states at rest (u = 0). When directly applied on
the initial scheme, it leads to order one methods, while coupling it with high order accuracy reconstruction increases the
order.

2.1. The hydrostatic reconstruction

We describe now the implementation of this method for high order accuracy. The first step is to perform a high order
reconstruction (MUSCL, ENO, UNO, WENO). To deal properly with the topography source term ∂xz, this reconstruction has to
be performed on u, h and h + z, see [4]. This gives us the reconstructed values (U−, z−) and (U+, z+), on which we apply
the hydrostatic reconstruction [1,4] on the water height, namely⎧⎪⎪⎪⎨

⎪⎪⎪⎩
hi+1/2L = max

(
hi+1/2− + zi+1/2− − max(zi+1/2−, zi+1/2+),0

)
,

Ui+1/2L = (hi+1/2L,hi+1/2Lui+1/2−),

hi+1/2R = max
(
hi+1/2+ + zi+1/2+ − max(zi+1/2−, zi+1/2+),0

)
,

Ui+1/2R = (hi+1/2R ,hi+1/2R ui+1/2+).

(3)

With the hydrostatic reconstruction, the finite volume scheme (2) is modified as follows

U∗
i = Un

i − �tΦ
(
Un) = Un

i − �t

�x

[
F n

i+1/2L − F n
i−1/2R − F cn

i

]
, (4)

where

F n
i+1/2L = F n

i+1/2 + Sn
i+1/2L, F n

i−1/2R = F n
i−1/2 + Sn

i−1/2R (5)

are left (respectively right) modifications of the initial numerical flux for the homogeneous problem. In this formula the flux
is now applied to reconstructed variables: F n = F(Un , Un ), and we have introduced
i+1/2 i+1/2L i+1/2R
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Fig. 1. Default of the hydrostatic reconstruction. Left: threshold nonactivated (limit case). Right: threshold activated.

Sn
i+1/2L =

(
0

g
2 (h2

i+1/2− − h2
i+1/2L)

)
, Sn

i−1/2R =
(

0
g
2 (h2

i−1/2+ − h2
i−1/2R)

)
. (6)

Finally, a centered source term has to be added to preserve consistency and well-balancing (see [1,4]):

F ci =
(

0

−g
hi−1/2++hi+1/2−

2 (zi+1/2− − zi−1/2+)

)
. (7)

Formula (7) preserves the second order accuracy, but has to be modified for higher order approximations.

2.2. The hydrostatic reconstruction rewritten

We define �zi+1/2 = zi+1/2+ − zi+1/2− . Once the space step and the high order reconstruction chosen, this is a fixed
sequence. Now, the reconstructed variables (3) write{

hi+1/2L = max
(
hi+1/2− − max(0,�zi+1/2),0

)
,

hi+1/2R = max
(
hi+1/2+ + min(0,�zi+1/2),0

)
.

(8)

With (8), the defect of the hydrostatic reconstruction becomes apparent. To fix the ideas, suppose the local slope is positive,
hence �zi+1/2 > 0, as in Fig. 1. Then, for all �zi+1/2 such that �zi+1/2 � hi+1/2− � 0, the reconstruction gives hi+1/2L = 0,
while hi+1/2R remains unchanged. In that case, the reconstruction prevents an unphysical negative value for hi+1/2L , the
counterpart of this being an underestimated difference hi+1/2L − hi+1/2R . Therefore, there is a lack in the numerical flux
computed from the modified Riemann problem, which gives an underestimated velocity and consequently an overestimated
height. This can be interpreted in terms of reconstructed slope as well, which is underestimated.

In the general case, we can write the following local criterion of “nonvalidity” for the hydrostatic reconstruction.

Proposition 2.1. For a fixed discretization, if for some i0 � i � i1 one has

�zi+1/2 � hi+1/2− � 0, or −�zi+1/2 � hi+1/2+ � 0, (9)

then the hydrostatic reconstruction will overestimate (resp. underestimate) the water height (resp. velocity).

Notice that from a theoretical viewpoint, this is not limiting. Indeed, since this class of schemes is consistent with the
system of partial differential equations (see [4]), the problem disappears when refining the discretization. However, it has to
be taken into account for practical computations, with a fixed discretization. It is particularly apparent for order 1 schemes,
but also remains present for order 2.

3. Numerical illustration

For numerical illustration purpose, we introduce an explicit solution which consists in a supercritical steady flow on an
inclined plane with constant slope ∂xz = α (it is referenced in the SWASHES library [8]). Steady states are solutions to

q(x, t) = q0 = C st, ∂x

(
hu2 + g

h2

2

)
= −gh∂xz,

and the height profile h(x) must be a solution to Bernoulli’s law rewritten as a third order equation in h:

h3 + h2
(
αx − q2

0

2gh2
− h0

)
+ q2

0

2g
= 0, (10)
0
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Fig. 2. Default of hydrostatic reconstruction: water height at first and second order of accuracy for different slopes. Left: first and second order curves.
Right: zoom on second order curves. Dotted curves are simulations, plain curves are exact solutions.

where h0 and q0 = h0u0 are the height and discharge at x = 0, which completely determine the profile since the flow is
supercritical. A careful study of the roots of the polynomial shows that the supercritical height profile is decreasing in x:
h(x) � h0 for all x � 0.

The numerical strategy we choose consists in the HLL flux and a modified MUSCL reconstruction. In [7], this combination
of flux and linear reconstruction has shown to be the best compromise between accuracy, stability and CPU time cost. We
refer to [4,7] for a presentation of the HLL flux. The MUSCL reconstruction of a scalar function s ∈R is

si−1/2+ = si − �x

2
Dsi, si+1/2− = si + �x

2
Dsi, (11)

where the “minmod” operator D is given by

Dsi = minmod

(
si − si−1

�x
,

si+1 − si

�x

)
, minmod(x, y) =

⎧⎨
⎩

min(x, y) if x, y � 0,

max(x, y) if x, y � 0,

0 else.

(12)

In order to keep the discharge conservation, the reconstruction of the velocity has to be modified as

ui−1/2+ = ui − hi+1/2−
hi

�x

2
Dui, ui+1/2− = ui + hi−1/2+

hi

�x

2
Dui .

Notice that if we take Dsi = 0 in (11), then zi+1/2− = zi+1/2− = zi so that the centered term (7) disappears, and we recover
the first order scheme in space. Second order in time is achieved through a classical Heun predictor–corrector method.

We turn now to the specific data for simulations. The domain length is L = 10 m, and we choose initial data

h0 = h(x = 0, t) = 0.02 m, q0 = q(x = 0, t) = 0.01 m2/s,

which is indeed supercritical. All simulations are performed with a space step �x = 0.1 m, the time step is fixed in order
to satisfy the CFL condition.

The analytical solution is computed with 7 negative slopes α = 5%, 13%, 14%, 15%, 16%, 17% and 18%, both at first and
second order. Numerical results are compared to the analytical results in Fig. 2, where a part of the domain is displayed
(x between 1 m and 3 m).

With this set of data, a domain of admissible slopes can be estimated for the order 1 hydrostatic reconstruction. Indeed
since �z j+1/2 = |α|�x, inserting a characteristic height of the flow h∗ in (9) gives a bound for the slope. One can use
h∗ = h0, the incoming height. Since the height profile is decreasing, the whole profile will be wrong if h0 � |α|�x, that is
here |α| � 20%. But actually, since the height decreases quite rapidly, a more accurate estimate is obtained for x = 1.5 m
with h∗ = 0.005 m (see Fig. 2), which leads to slopes above 5%.

We observe in Fig. 2(left) that with the first order scheme, the effect of the hydrostatic reconstruction is so important
that all curves for slopes between 13% and 18% are superposed. In that case, the apparent result is the simulation of a
single slope, namely 13%. For a 5% slope, we still observe a slightly overestimated water height, as anticipated since 5% is
a limit case as observed above. With the second order, the water heights are still overestimated, but in a very slighter way,
and the different curves are no longer identical (Fig. 2(right)).

4. Conclusions

The hydrostatic reconstruction may fail for certain combinations of water height, slope and mesh size, namely in regions
where (9) holds. The defaults are particularly apparent for order 1 schemes, leading to wrongly estimated slopes, but still
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remain at order 2, with some overestimated water heights. We emphasize that the problem disappears when refining
the mesh, but has to be taken into account for a given discretization. The generalization of the hydrostatic reconstruction
proposed in [6] does not exhibit the limitation discussed here, even for first order schemes, but positivity is not ensured.
Other schemes involving threshold values (e.g. [5,10]) very likely encounter the same kind of problem. Alternatively, the
scheme recently introduced in [3] preserves the water height positivity and does not suffer from this problem. Notice finally
that criterion (9) may be of some utility for adaptive mesh schemes, such as the ones used in Gerris [11].
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