

Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Log-concavity of complexity one Hamiltonian torus actions

Log-concavité des actions toriques hamiltoniennes de complexité un

Yunhyung Cho^a, Min Kyu Kim^b

^a School of Mathematics, Korea Institute for Advanced Study, 87 Hoegiro, Dongdaemun-gu, Seoul, 130-722, Republic of Korea
 ^b Department of Mathematics Education, Gyeongin National University of Education, San 59-12, Gyesan-dong, Gyeyang-gu, Incheon, 407-753, Republic of Korea

ARTICLE INFO

Differential Geometry

Article history: Received 31 May 2012 Accepted 11 July 2012 Available online 10 October 2012

Presented by the Editorial Board

ABSTRACT

Let (M, ω) be a closed 2*n*-dimensional symplectic manifold equipped with a Hamiltonian T^{n-1} -action. Then Atiyah–Guillemin–Sternberg convexity theorem implies that the image of the moment map is an (n-1)-dimensional convex polytope. In this Note, we show that the density function of the Duistermaat–Heckman measure is log-concave on the image of the moment map.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Soit (M, ω) une variété symplectique de dimension 2n munie d'une action hamiltonienne du tore T^{n-1} . Le théorème de convexité d'Atiyah–Guillemin–Sternberg implique que l'image de l'application moment est un polytope convexe de dimension (n - 1). Dans cette Note, nous montrons que la fonction de densité de la mesure de Duistermaat–Heckman est log-concave sur l'image de l'application moment.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In statistical physics, the relation $S(E) = k \log W(E)$ is called Boltzmann's principle where W is the number of states with given values of macroscopic parameters E (like energy, temperature, ...), k is the Boltzmann constant, and S is the entropy of the system, which measures the degree of disorder in the system. For the additive values E, it is well known that the entropy is always a concave function. (See [9] for more details.) In a symplectic setting, consider a Hamiltonian G-manifold (M, ω) with the moment map $\mu : M \to g^*$. The Liouville measure m_L is defined by

$$m_L(U) := \int_U \frac{\omega^n}{n!}$$

for any open set $U \subset M$. Then the push-forward measure $m_{DH} := \mu_* m_L$, called the *Duistermaat–Heckman measure*, can be regarded as a measure on \mathfrak{g}^* such that for any Borel subset $B \subset \mathfrak{g}^*$, $m_{DH}(B) = \int_{\mu^{-1}(B)} \frac{\omega^n}{n!}$ tells us that how many states of our system have momenta in *B*. By the Duistermaat–Heckman theorem [2], m_{DH} can be expressed in terms of the density function DH(ξ) with respect to the Lebesque measure on \mathfrak{g}^* . Therefore the concavity of the entropy of a given periodic Hamiltonian system on (M, ω) can be interpreted as the log-concavity of DH(ξ) on the image of μ . A. Okounkov [10]

E-mail addresses: yhcho@kias.re.kr (Y. Cho), mkkim@kias.re.kr (M.K. Kim).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.crma.2012.07.004



Fig. 1. Proof of Theorem 1.1.

proved that the density function of the Duistermaat–Heckman measure is log-concave on the image of the moment map for the maximal torus action, when (M, ω) is the co-adjoint orbit of some classical Lie groups. In [3], W. Graham showed that the log-concavity of the density function of the Duistermaat–Heckman measure also holds for any Kähler manifold admitting a holomorphic Hamiltonian torus action. V. Ginzberg and A. Knutson conjectured independently that the log-concavity holds for any Hamiltonian *G*-manifolds, but this turns out to be false in general, shown by Y. Karshon [5]. Further related works can be found in [7] and [1].

As noted in [5] and [3], log-concavity holds for Hamiltonian toric (i.e. complexity zero) actions, and Y. Lin dealt with the log-concavity of complexity two Hamiltonian torus actions in [7]. However, there is no result on the log-concavity of complexity one Hamiltonian torus action. This is why we restrict our interest to complexity one. From now on, we assume that (M, ω) is a 2*n*-dimensional closed symplectic manifold with an effective Hamiltonian T^{n-1} -action. Let $\mu : M \to t^*$ be the corresponding moment map where t^* is a dual of the Lie algebra of T^{n-1} . By the Atiyah–Guillemin–Sternberg convexity theorem, the image of the moment map $\mu(M)$ is an (n-1)-dimensional convex polytope in t^* . By the Duistermaat–Heckman theorem [2], we have

$$m_{\rm DH} = \rm DH(\xi) \, d\xi$$

where $d\xi$ is the Lebesque measure on $t^* \cong \mathbb{R}^{n-1}$ and $DH(\xi)$ is a continuous piecewise polynomial function of degree less than 2 on t^* . Our main theorem is as follows:

Theorem 1.1. Let (M, ω) be a 2n-dimensional closed symplectic manifold equipped with a Hamiltonian T^{n-1} -action with the moment map $\mu : M \to t^*$. Then the density function of the Duistermaat–Heckman measure is log-concave on $\mu(M)$.

2. Proof of Theorem 1.1

Let (M, ω) be a 2*n*-dimensional closed symplectic manifold. Let (n-1)-dimensional torus *T* act on (M, ω) in Hamiltonian fashion. Denote by t the Lie algebra of *T*. For a moment map $\mu : M \to \mathfrak{t}^*$ of the *T*-action, define the Duistermaat–Heckman function DH : $\mathfrak{t}^* \to \mathbb{R}$ as

$$\mathsf{DH}(\xi) = \int_{M_{\xi}} \omega_{\xi}$$

where M_{ξ} is the reduced space $\mu^{-1}(\xi)/T$ and ω_{ξ} is the corresponding reduced symplectic form on M_{ξ} .

Now, we define the x-ray of our action. Let T_1, \ldots, T_N be the subgroups of T^{n-1} which occur as stabilizers of points in M^{2n} . Let M_i be the set of points whose stabilizers are T_i . By relabeling, we can assume that the M_i 's are connected and the stabilizer of points in M_i is T_i . Then, M^{2n} is a disjoint union of M_i 's. Also, it is well known that M_i is open dense in its closure and the closure is just a component of the fixed set M^{T_i} . Let \mathfrak{M} be the set of M_i 's. Then, the *x*-ray of (M^{2n}, ω, μ) is defined as the set of $\mu(\overline{M_i})$'s. Here, we recall a basic lemma:

Lemma 2.1. (See [4, Theorem 3.6].) Let \mathfrak{h} be the Lie algebra of T_i . Then $\mu(M_i)$ is locally of the form $x + \mathfrak{h}^{\perp}$ for some $x \in \mathfrak{t}^*$.

By this lemma, $\dim_{\mathbb{R}} \mu(M_i) = m$ for (n - 1 - m)-dimensional T_i . Each image $\mu(\overline{M_i})$ (resp. $\mu(M_i)$) is called an *m*-face (resp. *an open m*-face) of the x-ray if T_i is (n - 1 - m)-dimensional. Our interest is mainly in open (n - 2)-faces of the x-ray, i.e. codimension one in t^{*}. Fig. 1 is an example of x-ray with n = 3 where thick lines are (n - 2)-faces. Now, we can prove the main theorem.

Proof of Theorem 1.1. When n = 2, we obtain a proof by [6, Lemma 2.19]. So, we assume $n \ge 3$. Pick arbitrary two points x_0, x_1 in the image of μ . We should show that

$$t \log(\mathsf{DH}(x_1)) + (1-t) \log(\mathsf{DH}(x_0)) \le \log(\mathsf{DH}(tx_1 + (1-t)x_0))$$
(1)

for each $t \in [0, 1]$. Put $x_t = tx_1 + (1 - t)x_0$.

Let us fix a decomposition $T = S^1 \times \cdots \times S^1$. By the decomposition, we identify t with \mathbb{R}^{n-1} , and t carries the usual Riemannian metric \langle, \rangle_0 which is a bi-invariant metric. This metric gives the isomorphism

$$\iota: \mathfrak{t} \to \mathfrak{t}^*, \qquad X \mapsto \langle \cdot, X \rangle_0.$$

For a small $\epsilon > 0$, pick two regular values ξ_i in the ball $B(x_i, \epsilon)$ for i = 0, 1 which satisfy the following two conditions:

i. $\xi_1 - \xi_0 \in \iota(\mathbb{Q}^{n-1}),$

ii. the line *L* containing ξ_0 , ξ_1 in \mathfrak{t}^* meets each open *m*-face transversely for $m = 1, \ldots, n-2$.

Transversality guarantees that the line does not meet any open *m*-face for $m \le n-3$. Put

 $\xi_t = t\xi_1 + (1-t)\xi_0$ and $X = \iota^{-1}(\xi_1 - \xi_0)$.

Let $\mathfrak{k} \subset \mathfrak{t}$ be the one-dimensional subalgebra spanned by *X*. By i., \mathfrak{k} becomes a Lie algebra of a circle subgroup of *T*, call it *K*. Let \mathfrak{t}' be the orthogonal complement of \mathfrak{k} in \mathfrak{t} . Again by i., \mathfrak{t}' becomes a Lie subgroup of an (n-2)-dimensional subtorus of *T*, call it *T'*. Let

$$p: \mathfrak{t}^* \to \mathfrak{t}'^* = \iota(\mathfrak{t}')$$

be the orthogonal projection along $\mathfrak{k}^* = \iota(\mathfrak{k}')$. If we put $\mu' = p \circ \mu$, then $\mu' : M \to \mathfrak{t}'^*$ is a moment map of the restricted T'-action on M. Put $\xi' = p(\xi_t)$ for $t \in [0, 1]$.

We want to show that ξ' is a regular value of μ' . For this, we show that each point $x \in {\mu'}^{-1}(\xi')$ is a regular point of μ' . By ii. and Lemma 2.1, stabilizer T_x is finite or one-dimensional. If T_x is finite, then x is a regular point of μ so that it is also a regular point of μ' . If T_x is one-dimensional, then $\mu(x)$ is a point of an open (n-2)-face $\mu(M_i)$ such that $x \in M_i$. Let \mathfrak{h} be the Lie algebra of $T_i = T_x$. By Lemma 2.1, $p(d\mu(T_xM_i)) = p(\mathfrak{h}^{\perp})$, and the kernel \mathfrak{k} of p is not contained in \mathfrak{h}^{\perp} by transversality. So, $p(\mathfrak{h}^{\perp})$ is the whole \mathfrak{t}'^* because dim $\mathfrak{h}^{\perp} = \dim \mathfrak{t}'^*$, and this means that x is a regular point of μ' . Therefore, we have shown that ξ' is a regular value of μ' .

Since ξ' is a regular value, the preimage $\mu'^{-1}(\xi')$ is a manifold and T' acts almost freely on it, i.e. stabilizers are finite. So, if we denote by $M_{\xi'}$ the symplectic reduction $\mu'^{-1}(\xi')/T'$, then it becomes a symplectic orbifold carrying the induced symplectic T/T'-action. We can observe that the image of $\mu'^{-1}(\xi')$ through μ is the thick dashed line in Fig. 1. Since $K/(K \cap T') \cong T/T'$, we will regard $K/(K \cap T')$ and \mathfrak{k} as T/T' and its Lie algebra, respectively. The map $\mu_X := \langle \mu, X \rangle$ induces a map on $M_{\xi'}$ by T-invariance of μ , call it just μ_X where $\langle , \rangle : \mathfrak{k}^* \times \mathfrak{t} \to \mathbb{R}$ is the evaluation pairing. Then, we can observe that μ_X is a Hamiltonian of the $K/(K \cap T')$ -action on $M_{\xi'}$, and that M_{ξ_t} is symplectomorphic to the symplectic reduction of $M_{\xi'}$ at the regular value $\langle \xi_t, X \rangle$ with respect to μ_X . If we denote by DH_X the Duistermaat–Heckman function of $\mu_X : M_{\xi'} \to \mathbb{R}$, then we have DH(ξ_t) = DH_X($\langle \xi_t, X \rangle$) for $t \in [0, 1]$. Since $M_{\xi'}$ is a four-dimensional symplectic orbifold with Hamiltonian circle action, DH_X is log-concave by Lemma 2.2 below. Since x_t and ξ_t are sufficiently close and DH is continuous by [2], we can show (1) by log-concavity of DH_X.

Lemma 2.2. Let (N, σ) be a closed four-dimensional Hamiltonian S^1 -orbifold. Then the density function of the Duistermaat–Heckman measure is log-concave.

Proof. Let $\phi : N \to \mathbb{R}$ be a moment map. Then the density function DH : Im $\phi \to \mathbb{R}_{\geq 0}$ of the Duistermaat–Heckman measure is given by

$$\mathsf{DH}(t) = \int_{N_t} \sigma_t$$

for any regular value $t \in \text{Im }\phi$. Let $(a, b) \subset \text{Im }\phi$ be an open interval consisting of regular values of ϕ and fix $t_0 \in (a, b)$. By the Duistermaat–Heckman theorem [2], $[\sigma_t] - [\sigma_{t_0}] = -e(t - t_0)$ for any $t \in (a, b)$, where e is the Euler class of the S^1 -fibration $\phi^{-1}(t_0) \rightarrow \phi^{-1}(t_0)/S^1$. Therefore

$$\mathsf{DH}'(t) = -\int_{N_t} e$$

and

$$\mathrm{DH}''(t) = 0$$

for any $t \in (a, b)$. Note that DH(t) is log-concave on (a, b) if and only if it satisfies DH(t) · DH''(t) – DH'(t)² ≤ 0 for all $t \in (a, b)$. Hence DH(t) is log-concave on any open intervals consisting of regular values.

Let *c* be any interior critical value of ϕ in Im ϕ . Then it is enough to show that the jump in the derivative of $(\log DH)'$ is negative at *c*. First, we will show that the jump of the value $DH'(t) = -\int_{N_t} e$ is negative at *c*. Choose a small $\epsilon > 0$ such that $(c - \epsilon, c + \epsilon)$ does not contain a critical value except for *c*. Let N_c be a symplectic cut of $\phi^{-1}[c - \epsilon, c + \epsilon]$ along the extremum so that N_c becomes a closed Hamiltonian S^1 -orbifold whose maximum is the reduced space $M_{c+\epsilon}$ and the minimum is $N_{c-\epsilon}$. Using the Atiyah–Bott–Berline–Vergne localization formula for orbifolds [8], we have

$$0 = \int_{N_c} 1 = \sum_{p \in N^{S^1} \cap \phi^{-1}(c)} \frac{1}{d_p} \frac{1}{p_1 p_2 \lambda^2} + \int_{M_{c-\epsilon}} \frac{1}{\lambda + e_-} + \int_{N_{c+\epsilon}} \frac{1}{-\lambda - e_+}$$

which is equivalent to

$$0 = \sum_{p \in N^{S^1} \cap \phi^{-1}(c)} \frac{1}{p_1 p_2} = \int_{N_{c-\epsilon}} e_- - \int_{N_{c+\epsilon}} e_+,$$

where d_p is the order of the local group of p, p_1 and p_2 are the weights of the tangential S^1 -representation on T_pN , and e_- (e_+ respectively) is the Euler class of $\phi^{-1}(c - \epsilon)$ ($\phi^{-1}(c + \epsilon)$ respectively). Since c is in the interior of Im ϕ , we have $p_1p_2 < 0$ for any $p \in N^{S^1} \cap \phi^{-1}(c)$. Hence the jump of $DH'(t) = -\int_{N_t} e$ is negative at c, which implies that the jump of $\log DH(t)' = \frac{DH'(t)}{DH(t)}$ is negative at c (by continuity of DH(t)). This finishes the proof. \Box

References

- [1] Y. Cho, The log-concavity conjecture on semifree symplectic S¹-manifolds with isolated fixed points, arXiv:1103.2998.
- [2] J.J. Duistermaat, G.J. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math. 69 (1982) 259-268
- [3] W. Graham, Logarithmic convexity of push-forward measures, Invent. Math. 123 (1996) 315-322.
- [4] V. Guillemin, S. Sternberg, Convexity property of the moment mapping, Invent. Math. 67 (1982) 491-513.
- [5] Y. Karshon, Example of a non-log-concave Duistermaat-Heckman measure, Math. Res. Lett. 3 (1996) 537-540.
- [6] Y. Karshon, Periodic Hamiltonian flows on four dimensional manifolds, Mem. Amer. Math. Soc. 141 (672) (1999).
- [7] Y. Lin, The log-concavity conjecture for the Duistermaat-Heckman measure revisited, Int. Math. Res. Not. (10) (2008), Art. ID rnn027, 19 pp.
- [8] E. Meinrenken, Symplectic surgery and the Spin^c-Dirac operators, Adv. Math. 134 (1998) 240-277.
- [9] A. Okounkov, Why would multiplicities be log-concave?, in: The Orbit Method in Geometry and Physics, Marseille, 2000, in: Progress in Mathematics, vol. 213, Birkhäuser Boston, Boston, MA, 2003, pp. 329–347.
- [10] A. Okounkov, Log-concavity of multiplicities with application to characters of $U(\infty)$, Adv. Math. 127 (1997) 258–282.