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We present the analysis of an interior-point method to decide feasibility problems of
second-order conic systems. A main feature of this algorithm is that arithmetic operations
are performed with finite precision. Bounds for both the number of arithmetic operations
and the finest precision required are exhibited.
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r é s u m é

Nous présentons une analyse de la méthode des points intérieurs pour résoudre les
problèmes de faisabilité des systèmes coniques du second ordre. Une caractéristique
principale de cet algorithme est que les opérations arithmétiques sont effectuées en
précision finie. Des estimations du nombre des opérations arithmétiques et de la précision
requise sont obtenues.

© 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Second-order homogeneous feasibility problems

A common form (after homogenizing, if necessary) of linear conic feasibility problem is the alternative pair

Ax = 0, x ∈ K (P)

and

−AT y ∈ K ∗. (D)

Here A ∈R
m×n is a matrix, K ⊂ R

n is a closed convex cone and K ∗ ⊂ R
n is the dual cone of K . We sometimes write x �K 0

instead of x ∈ K and we write x �K 0 to denote that x is in the relative interior of K .
It is well known that each of (P) and (D) above has a strict solution (one where the membership is in the relative interior

of the cone) if and only if the other has no solutions at all (the point 0 is not considered as a solution for these problems).
The feasibility problem consists in, given A, deciding which of the two systems, if any, has a strict solution.
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Paramount examples of K are the positive orthant [0,∞)n—which gives rise to linear programming—, the cone of positive
semidefinite matrices—at the basis of semidefinite programming—, and the second-order cone. The latter is defined to be
the product of a finite number of Lorentz cones Lp ⊂R

p+1 which, in turn, are given by

Lp := {
x ∈R

p+1
∣∣ x0 �

∥∥(x1, . . . , xp)
∥∥}

.

Problems induced by second-order cones, known as second-order programming problems, are a particular case of semidefi-
nite programming and contain as a particular case all instances of linear programming. They have lately received consider-
able attention due to their many applications [11] and since they appear to be at the boundary of the problems for which
interior-point methods can solve large instances, a fact that is linked to the appearance of commercial software for the
solution of second-order programs such as MOSEK2 or CPLEX.3

2. Interior-point methods

An analysis of interior-point methods for SOCP can be found in [13] (see also the references therein). A theoretical
analysis of interior-point methods for general convex cones can be found in [9]. As it was remarked in [1,11], however,
solving SOCP problems by reducing them to semidefinite programs (or to more general conic problems) is not a good idea
since interior-point methods that solve the SOCP directly have a much better complexity (both theoretically and in practice)
than when applied to these more general reformulations.

In this Note we present an analysis of a finite-precision algorithm for solving the SOCP feasibility problem. This algorithm
is designed to work with variable precision, that is, the machine precision can be re-adjusted along the way. Our Main
Theorem shows bounds for the finest machine precision and the maximal number of iterations (and hence, of arithmetic
operations) needed by this algorithm. We next define the main ingredients of these bounds.

2.1. Condition and well-posedness

Our bounds depend on Renegar’s condition number [8,9], which is consistent with similar bounds obtained for the
polyhedral case in [5]. Let ρP (A) and ρD(A) be the distance to infeasibility of (P) and (D) respectively defined by

ρP (A) = inf
{‖�A‖: (A + �A)x = 0, x �K 0 is infeasible

}

and

ρD(A) = inf
{‖�A‖: −(A + �A)T y �K 0, y ∈ R

m is infeasible
}
.

Note, we used in this definition the fact that a second-order cone K is self-dual, i.e., K = K ∗ . Then Renegar’s condition
number C(A) is defined as the reciprocal of the relative distance to ill-posedness of the pair (P)–(D):

C(A) := ‖A‖
max{ρP (A),ρD(A)} .

Although any equivalent matrix norm can be used to define C(A), in our analysis we choose to use the standard operator
norm induced by the Euclidean scalar product. We say that the problem is ill-posed if both ρP (A) = ρD(A) = 0 and hence
C(A) = ∞.

2.2. Finite precision and approximate solutions

A common feature of all studies on SOCP made up to now is the assumption of infinite precision in all the performed
arithmetic operations. In this Note we will assume instead a context of finite precision in which the following quantity plays
the key role.

The round-off unit or machine precision of a machine is a number u ∈ R, 0 < u < 1, such that real numbers x in the
machine are systematically replaced by approximations round(x) satisfying |round(x)− x| � u|x|. Roughly, | log u| corresponds
with the number of digits of the mantissa in the floating-point representation of round(x).

We consider variable precision algorithms. In this context the machine precision, though finite, varies during the com-
putation. It is initially small and subsequently needs to be sharpened, but remains bounded.

The assumption of finite precision sets some limitations on the kind of solutions we may obtain. If system (D) has strict
solutions, then we will obtain, after sufficiently refining the precision, a strict solution y ∈ R

m . On the other hand, if the
system having solution is (P), then there is no hope of exactly computing one such solution, since the set of solutions is thin
in R

n . In such a case there is no way to ensure that the errors produced by the use of finite precision will not move any
candidate solution out of the set. We can, however, compute good approximations, namely, forward-approximate solutions.

2 http://www.mosek.com/.
3 http://www.ilog.com/products/cplex/.



F. Cucker et al. / C. R. Acad. Sci. Paris, Ser. I 350 (2012) 639–641 641
Definition 1. Let γ ∈ (0,1). A point x̂ ∈ R
n is a γ -forward solution of the system Ax = 0, x �K 0, if x̂ �K 0, and there exists

x̆ ∈ R
n such that

Ax̆ = 0, x̆ �K 0

and

‖x̂ − x̆‖� γ ‖x̂‖.
The point x̆ is said to be an associated solution for x̂. A point is a forward-approximate solution of Ax = 0, x �K 0, if it is a
γ -forward solution of the system for some γ ∈ (0,1).

3. Statement of the main result

We estimate both the number of iterations of the algorithm and the precision required as functions of m,n, r and the
condition number C(A). Our main result (recall, K is the product of r Lorentz cones) is the following (see [6] for a proof).

Main Theorem. There exists a finite precision algorithm which, with input a matrix A ∈ R
m×n and a number γ ∈ (0,1), finds either a

strict γ -forward solution x ∈ R
n of Ax = 0, x �K 0, or a strict solution y ∈ R

m of the system AT y �K 0. The machine precision varies
during the execution of the algorithm. The finest required precision is

u = 1

c(m + n)5/2r20C(A)5
,

where c is a universal constant and r = r + 2. The number of main (interior-point) iterations of the algorithm is bounded by

O
(
r1/2(log(r) + log

(
C(A)

) + | logγ |))

if (P) is strictly feasible and by the same expression without the | logγ | term if (D) is.
Each such iteration is performed with O (n3) arithmetic operations.

3.1. A final remark

In the numerical analysis literature, fixed precision is used more commonly than variable precision. We note here that
from our variable precision analysis we can obtain a fixed precision one. Indeed, assume the precision u is fixed. Then our
algorithm could run until the point at which it should get a precision finer than u. If it found the answer before this point
it could return it (and this answer would be guaranteed to be correct). If not, it could halt and return a failure message.
Furthermore, the only reason for u to be insufficient is that C(A) is too large. Solving the bound for u in the Main Theorem
we obtain a lower bound Cu for C(A). Thus, the failure message could be something like “The condition of the data is larger
than Cu . To solve the problem I need more precision.”

Finite precision analyses are pervasive in Numerical Linear Algebra. They are much less common in optimization. While
the effects of finite precision when solving linear programming problems had been early noticed (e.g. [2,4,7,10,12,15]) there
was no condition-based round-off analysis of linear programming problems until recently. This was done for the feasibility
problem for polyhedral conic systems [5], for the optimal value of linear programs [14], and for the computation of optimal
basis and optimal solutions of linear programs [3]. To the best of our knowledge, the Main Theorem above is the first such
analysis for nonlinear cones.
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