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We prove in this Note that there is, for some foliated bundles, a bijective correspondence
between Garnett’s harmonic measures and measures on the fiber that are stationary
for some probability measure on the holonomy group. As a consequence, we show the
uniqueness of the harmonic measure in the case of some foliations transverse to projective
fiber bundles.
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r é s u m é

On prouve dans cette Note qu’il y a, pour certains fibrés feuilletés, une correspondance
bijective entre les mesures harmoniques au sens de Garnett et les mesures sur la fibre
qui sont stationnaires pour une certaine mesure de probabilité sur le groupe d’holonomie.
Nous en déduisons l’unicité de la mesure harmonique pour certains feuilletages transverses
à une fibration projective.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Le but de cette Note est de donner une application directe de la discrétisation du mouvement Brownien de Furstenberg–
Lyons–Sullivan [6,9] à l’étude des mesures harmoniques des feuilletages introduites par Garnett [7]. La motivation principale
de ce travail est d’obtenir des théorèmes d’unicité de mesures harmoniques pour des fibrés feuilletés transversalement
projectifs, généralisant ainsi certains résultats de Bonatti et Gómez-Mont [2]. Ces mesures harmoniques sont, par définition,
invariantes en moyenne par diffusion Brownienne le long des feuilles. Lorsque le feuilletage est transverse à une fibration il
est possible de désintégrer une telle mesure dans les fibres par rapport au volume dans la base, et de regarder l’action du
groupe d’holonomie sur les mesures conditionnelles.

Étant donnée une mesure de probabilité sur le groupe d’holonomie, on peut s’intéresser aux mesures sur une fibre qui
sont invariantes en moyenne par l’action du groupe. Ce sont ces mesures que l’on appelle stationnaires. Nous savons, depuis
les travaux de Furstenberg [5] qu’il existe des critères explicites garantissant l’unicité de mesures stationnaires pour des
actions projectives. L’idée est alors de ramener l’étude des mesures harmoniques du feuilletage à celle des mesures station-
naires pour une certaine mesure de probabilité sur le groupe d’holonomie qui est obtenue en discrétisant le mouvement
Brownien.

Le résultat principal de cette Note est qu’il y a une bijection entre ces deux types de mesures. Énonçons précisément le
théorème principal. Considérons S une variété riemannienne de volume fini dont la géométrie est bornée. Soit Π : N → S
un fibré localement trivial dont la fibre V est une variété différentielle compacte. Supposons de plus que le fibré soit plat :
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il existe un feuilletage F de N dont les feuilles sont transverses à la fibration et revêtent la base, et dont l’holonomie est
donnée par une action par difféomorphismes du groupe fondamental de S sur V .

Théorème Principal. Il existe une mesure de probabilité μ sur Γ = π1(S) telle que pour tout fibré feuilleté Π : N → S dont la fibre
V est compacte, on ait une bijection entre les mesures harmoniques du feuilletage F , et les mesures sur V qui sont μ-stationnaires.

Appliquons ce théorème au cas où la fibre est un espace projectif, et où la base est une variété compacte de courbure
négative. Supposons de plus que l’action sur la fibre soit projective, contractante et fortement irréductible (les définitions
précises se trouvent dans l’introduction). On obtient alors le résultat suivant qui est un corollaire du théorème principal,
ainsi que d’un résultat de Guivarc’h et Raugi [8] :

Corollaire. Soit S une variété riemannienne compacte à courbure sectionnelle négative et V = CP
d−1 , où d � 2. Considérons un fibré

feuilleté Π : N → S de fibre V . Supposons que l’action de Γ = π1(S) sur V donnée par l’holonomie du feuilletage soit contractante et
fortement irréductible. Alors le feuilletage F possède une unique mesure harmonique.

1. Introduction

1.1. Foliated bundles

Let M be a C3 complete connected and simply connected Riemannian manifold with bounded geometry. We consider Γ

a discrete subgroup of isometries of M with finite covolume, so that the quotient S = M/Γ is a manifold of finite volume,
and we have the identification Γ = π1(S). Then it is known that harmonic functions of S are constant and the Brownian
motion on S is recurrent.

Assume that Γ acts by diffeomorphisms on a compact differential manifold V : there is a representation ρ : Γ → Diff(V )

(note that the differential structure on V plays no role: we could have taken any compact topological space). Then Γ acts
diagonally on the product M × V . It means that for a couple (p, t) ∈ M × V , we define γ (p, t) = (γ p,ρ(γ )t). It is proved
in [4] that the quotient N is a differential manifold, called the suspension of the action, and is endowed with:

• a structure of fiber bundle over S with V -fibers,
• a transversal foliation F , called the suspension foliation, whose leaves are covering spaces of the base S , and whose

holonomy group is given by ρ̂(γ ) = ρ(γ −1).

We can lift the metric of S to the leaves of F via the fibration: this leafwise metric varies continuously with the
leaf in the C3-topology. Therefore, it is possible to define a Laplace operator on each leaf, that gives us a foliated Laplace
operator on denoted by �F . More precisely, if f is a continuous function defined on N that is C2 along the leaves, �F f
is the continuous function whose restriction to any leaf L is the Laplacian of f |L . That leads us to consider leafwise heat
equation, and finally Brownian diffusion: see [7]. The existence of probability measures on N invariant by this process,
called harmonic measures for F , is guaranteed by a theorem of L. Garnett [7] in the case where the base S is compact.
In the non-compact case, this is a consequence of the main theorem, because, as mentioned below, stationary measures on
compact spaces always exist. They are, by definition, the measures that vanish on all the Laplacians.

If m is a harmonic measure for F , its projection on S is also harmonic (it vanishes on all the Laplacians). But since S
has finite volume and bounded geometry, there exists, up to a scalar factor, only one harmonic measure: the normalized
Lebesgue measure denoted by Leb. Hence, it is possible to disintegrate m on the fibers with respect to Lebesgue measure in
the sense of Rokhlin (see [10]): there exists, for Lebesgue-almost every z ∈ S a probability measure mz , called the conditional
measure, on the fiber V z � V such that for any Borelian B ⊂ N , we have:

m(B) =
∫
S

mz(B ∩ V z)d Leb(z).

Now assume that there is a probability measure μ on Γ . A probability measure ν on V is said to be μ-stationary if
the action of Γ leaves ν invariant on average: ν = ∑

γ μ(γ )γ ∗ ν . Existence of such measures is guaranteed by a Krylov–
Bogoliubov type argument because V is compact.

While the conditional measures of harmonic probabilities are invariant on average by holonomy transportation along
Brownian paths, stationary measures are invariant on average under the action of the holonomy group. The theorem that
follows is our main result, and states that these objects are the same, provided a good choice of a probability measure on Γ .

Main Theorem. There exists a probability measure μ on Γ such that for any such foliated bundle, there is a bijective correspondence
between harmonic measures for the foliation F and μ-stationary measures on V .

Let’s consider a particular case. Assume that S is a compact manifold with negative curvature, that V = CP
d−1 with

d � 2, and that we have a projective representation ρ : Γ → PSLd(C).
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Definition 1.1.

1. We say that the representation ρ is contracting if for any probability measure on CP
d−1, there exists a sequence

(γn)n∈N ∈ Γ N such that ρ(γn) ∗ m converges to a Dirac mass for the weak-∗ topology.
2. We say that the representation ρ is strongly irreducible if no finite family {V 1, . . . , Vk} of proper projective subspaces

of CPd−1 is invariant under every ρ(γ ), γ ∈ Γ .

We can state the following theorem (slightly modified to fit to our context) of Guivarc’h and Raugi [8]:

Theorem 1.2 (Guivarc’h–Raugi). Assume that μ is a probability measure on Γ with full support. Let’s consider a contract-
ing and irreducible representation ρ : Γ → PSLd(C). Assume moreover that ρ satisfies the following integrability condition:∑

γ ∈Γ μ(γ ) log ‖ρ(γ )‖ < ∞. Then there is a unique μ-stationary probability measure ν on CP
d−1 .

As we will see in later, the measure μ on Γ given by the Main Theorem satisfies the full support condition, as well as
the integrability condition for any representation. Therefore, the Main Theorem and Theorem 1.2 give the following corollary:

Corollary. Assume that S is a compact Riemannian manifold with negative sectional curvature. Let ρ : π1(S) → PSLd(C) be a con-
tracting and strongly irreducible projective representation. Let Π : N → S be the foliated bundle obtained by the suspension of ρ . Then
there exists a unique harmonic measure for the suspension foliation.

Note that, at least when d = 2 and S is a compact surface, the condition of being contracting and strongly irreducible is
open and dense in the variety of representations of π1(S) in PSL2(C) (see [3]). Even if it seems plausible that this condition
remains open and dense in more generality, we did not find any reference in the literature.

1.2. Discretization of the Brownian motion

Remember that M is a C3 complete connected and simply connected Riemannian manifold with bounded geometry,
and Γ < Isom+(M) is discrete of finite covolume. By discretization of Brownian motion on M , we mean discretization of
functions that are invariant under Brownian diffusion: the harmonic functions. We fix p0 once for all.

Before stating the theorem, we need two notations.

• The set H+(M,�) consists of positive harmonic functions on M for the Laplace–Beltrami operator �.
• If (μγ p0)γ ∈Γ is a family of probabilities on Γ , we say a function h : Γ p0 → R

+ is (μγ p0)γ ∈Γ -harmonic if for every
γ ∈ Γ , h(γ p0) = ∑

ξ∈Γ μγ p0(ξ)h(ξ p0).

We call H+(Γ p0, (μγ p0 )γ ∈Γ ) the set of such functions.

Theorem 1.3 (Furstenberg–Lyons–Sullivan). There exists a family of probability measures on Γ denoted by (μp)p∈M such that:

(1) Each μp has full support: for any p ∈ M and γ ∈ Γ , we have μp(γ ) > 0.
(2) The family is Γ -equivariant, that is for every p ∈ M and γ1, γ2 ∈ Γ , μγ1 p(γ1γ2) = μp(γ2).
(3) For any function h ∈ H+(Γ p0, (μγ p0)γ ∈Γ ), the formula Φh(p) = ∑

γ ∈Γ μp(γ )h(γ p0) defines a smooth harmonic function of
p ∈ M.

(4) The application Φ :H+(Γ p0, (μγ p0)γ ∈Γ ) →H+(M,�) is a bijection, the inverse application just being the restriction.

In their article [1], Ballmann and Ledrappier proved that for spaces with sectional curvature pinched into two constants,
the family (μp)p∈M can be chosen with the following property of integrability:

Theorem 1.4 (Ballmann–Ledrappier). If the sectional curvature of M is pinched into two negative constants, it is possible to choose the
family (μp)p∈M of Theorem 1.3 such that each measure μp on Γ has finite first moment, that is:

∑
γ ∈Γ μp(γ )dist(p0, γ p0) < ∞.

2. Proof of the theorem

In what follows, we are under the hypothesis of the Main Theorem: M is a C3 complete connected and simply connected
Riemannian manifold with bounded geometry, Γ is a lattice of direct isometries of M so that S = M/Γ is a manifold
with finite volume. V is a compact differential manifold and Π : N → S is a foliated bundle obtained by suspension of a
representation ρ : Γ → Diff(V ). For sake of simplicity, if ν is a measure on V , we will use the notation γ ∗ ν = ρ(γ ) ∗ ν .
We have fixed once for all a point p0 ∈ M , and its projection z0 ∈ S . Finally, (μp)p∈M is the family given by the theorems
of the previous section.
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2.1. Conditional measures of harmonic measures are stationary

The condition for having a foliation transversal to the bundle Π : N → S is equivalent to that of flatness. This means that
there exists a locally finite family of small balls of S , say (Ui)i∈N , that trivialize the bundle: Π−1(Ui) � Ui × V , such that
the intersection of any two of the Ui ’s is connected, and the transition functions are of the form (z, t) ∈ (Ui ∩ U j) × V 
→
(z, τi j(t)) ∈ (Ui ∩ U j) × V , τi j being a diffeomorphism of V independent of z.

These τi j are called the holonomy transformations. We have the following relations: τ ji = τ−1
i j and if Ui ∩ U j ∩ Uk �= ∅,

then τ jkτi j = τik . If we have a continuous path c in the base, and a chain (Ui0 , . . . , Uin ) of discs that covers c, the holonomy
transportation along c is τc = τin−1 in · · ·τi0 i1 . This application does not depend on the covering, nor on the choice of c, but
only on the homotopy class of c. Note that if γ is an element of Γ identified with a homotopy class of a loop based in z0,
then τγ = ρ(γ )−1. In the sequel, we will use the abusive notation Π−1(Ui) = Ui × V . Note that it is possible to assume
that the Ui ’s are sufficiently small so that they also trivialize the universal cover M → S .

Let m be a harmonic measure for the foliation and (mz)z∈S its disintegration with respect to Lebesgue: each mz is a
probability measure on the fiber V z . Remember that a theorem of Rokhlin [10] gives uniqueness of this family up to a zero
measure of z ∈ S . It is possible to show (cf. [7]) that in a chart Ui × V , we have the following decomposition of the measure:

m|Ui×V = hi(z, t) Leb(z)νi(t), (1)

where νi is a measure on V , and hi is a measurable function, defined on Ui × Ai where Ai ⊂ V has full νi -measure, which
is of class C2 and harmonic on almost-each plaque. Hence, it allows us to identify the conditional measures in the following
way: for z ∈ Ui , mz = hi(z, t)νi(t).

Note that if c is a continuous path on the basis starting at z, then the holonomy acts on the measures mz by τc ∗ mz =
h(z, τ−1

c (t))τc ∗ νi(t). The goal of this section is to prove the following:

Proposition 2.1. Let z0 be the projection of p0 on S. Then the measure mz0 is μp0 -stationary: mz0 = ∑
γ ∈Γ μp0(γ )γ ∗ mz0 .

In order to prove this proposition, we have to state explicitly the cocycle relations introduced by the holonomy. If we
evaluate m over Ui ∩ U j , we obtain that for t ∈ Ai ∩ τ−1

i j (A j):

hi(z, t)

h j(z, τi j(t))
= d[(τ−1

i j ) ∗ ν j]
dνi

(t). (2)

This shows that even if the νi are not invariant under holonomy, the class of the measure is. Therefore, it is possible to
assume that τi j(Ai) = A j . This is the same as taking A ⊂ V full for each measure νi and invariant under holonomy maps, in
such a way that each hi is defined on Ui × A.

We have chosen U0 small enough so that all the plaques U0 × {t} have a section in the universal cover Ũ0 ⊂ M that
contains p0: it is possible to lift the function h0(., t) in order to obtain a harmonic function Ht : Ũ0 → R. The next lemma
shows that this function can be extended harmonically to the whole M .

Lemma 2.2. For any t ∈ A, the function Ht can be extended harmonically to M. Moreover, if p ∈ M and c is the projection on S of the
segment [p0, p], and if z ∈ Ui is the ending point of c, then we have the relation:

Ht(p) = d[(τ−1
c ) ∗ νi]
dν0

(t)hi
(
z, τc(t)

)
. (3)

Proof. We have to show by induction on the number of different Ui ’s met by the projection c of [p0, p]. If this number
is zero, there is nothing to prove since the function Ht is harmonic on Ũ0. Now for the heredity, it is enough to remark

that, by the relation (2) if Ui ∩ U j �= ∅, then the function hij : z ∈ U j × {τi j(t)} 
→ h j(z, τi j(t))
d[(τ−1

i j )∗ν j ]
dνi

(t) is a harmonic
continuation of hi(., t) : Ui × {t} → R. �

We will need the next lemma which is a consequence of the previous one and from which we will obtain the proof of
the proposition, as well as the fact that the map that associates to a harmonic measure m its conditional measure on the
fiber V z0 is injective.

Lemma 2.3. Take p ∈ M, and consider the projection c on S of the segment [p0, p]. Then for all t ∈ A:

Ht(p) =
∑
γ ∈Γ

μp(γ )h0
(
z0,ρ(γ )−1t

)dγ ∗ ν0

dν0
(t). (4)
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Proof. Since for any t ∈ A, the function Ht is harmonic in M , it is possible to use Theorem 1.3: for every t ∈ A and p ∈ M , we
have Ht(p) = ∑

γ ∈Γ μp(γ )Ht(γ p0). The homotopy class of the projection of [p0, γ p0] is of course given by γ , and the as-

sociated holonomy transformation is given by τγ = ρ(γ )−1. Hence, by the relation (3), Ht(γ p0) = h0(z0,ρ(γ )−1t) dγ ∗ν0
dν0

(t).
Finally, the relation (4) is true. �

Now, we can end the proof of Proposition 2.1:

Proof of Proposition 2.1. Since A is full for ν0, we can multiply the relation (4) by the measure ν0. When p = p0, the left
member becomes Ht(p0)ν0, that is by definition, h0(z0, t)ν0. But remember that the latter is equal to mz0 .

The right member is a combination of the measures h0(z0,ρ(γ )−1t) dγ ∗ν0
dν0

(t)ν0 = h0(z0,ρ(γ )−1t)γ ∗ ν0 with weight
μp0(γ ). But remember also that the latter measure is γ ∗mz0 , we obtain: mz0 = ∑

γ ∈Γ μp0(γ )γ ∗mz0 , concluding the proof
of the proposition. �

Similarly, if we apply Lemma 2.3 for any p:

Lemma 2.4. Take p ∈ M, and call c the projection on S of the segment [p0, p], and z the projection of p on S. Then the following
equality is true: mz = τc ∗ (

∑
γ ∈Γ μp(γ )γ ∗ mz0).

Proof. Let p, c and z be as in the lemma. We assume that z ∈ Ui . For all t ∈ A, the relation (3) gives Ht(p) =
d(τ−1

c ∗νi)
dν0

(t)hi(z, τc(t)). Hence, if we multiply the relation (4) by ν0, the left member becomes hi(z, τc(t))
d(τ−1

c ∗νi)
dν0

(t)ν0 =
hi(z, τc(t))τ−1

c ∗ νi . But remember that the latter is equal to τ−1
c ∗ mz .

On the other hand, the second member is transformed exactly in the same way as in the proof of the proposition, the
only difference is that we obtain the combination of the γ ∗ mz0 whose weights are given by the μp(γ ) and no longer
by the μp0(γ ). The relation we obtain is: τ−1

c ∗ mz = ∑
γ ∈Γ μp(γ )γ ∗ mz0 . We conclude the proof of the proposition by

pushing by τc . �
Hence, all conditional measures of m can be constructed from the one on the fiber of z0. We therefore have the following

injectivity result:

Corollary 2.5. Let’s assume the hypothesis of the proposition. Let m and m′ be two harmonic measures such that the conditional
measures mz0 and m′

z0
are equal. Then the two measures m and m′ are equal.

2.2. Construction of a harmonic measure from a stationary measure

Let ν be a μp0 -stationary measure on V . Remember that this implies in particular that all the γ ∗ ν are in the same
measure class. In order to construct a harmonic measure for F , we will construct a measure on each {p}× V , p ∈ M , thanks
to the family of Theorem 1.3, integrate it with respect to the Lebesgue measure, and pass to the quotient. Lemma 2.4 gives
us candidates for conditional measures. Indeed, if p ∈ M , we state:

m̃p =
∑
γ ∈Γ

μp(γ )γ ∗ ν. (�)

Note that in particular, by stationarity of the measure ν , we have m̃p0 = ν .

Proposition 2.6. Let m̃ be a measure on M × V obtained as the integration of the m̃p with respect to Lebesgue. Then m̃ is harmonic
and passes to the quotient by the diagonal action, giving a harmonic measure m for the suspension F on N.

Proof. Let’s prove first the second part of the proposition: we have to show that m̃ is invariant under the action of Γ . First,
note that since Γ acts on M by isometries, its action on M leaves invariant the Lebesgue measure. Hence, we are left to
show that the conditional measures are preserved by the action of Γ , we want to show that for any ξ ∈ Γ ,

ξ ∗ m̃p = m̃ξ p. (5)

And this is a simple consequence of the equivariance (see item 2 of Theorem 1.3) of the family of measures (μp)p∈M .
For any p ∈ M and ξ ∈ Γ , ξ ∗ m̃p = ∑

γ ∈Γ μp(γ )(ξγ ) ∗ ν = ∑
γ ∈Γ μξ p(ξγ )(ξγ ) ∗ ν = ∑

η∈Γ μξ p(η)η ∗ ν = m̃ξ p .

We then have to prove the first part. It is sufficient to show that in restriction to any M × {t} the measure m̃ has a
harmonic density with respect to the Lebesgue measure. Hence, let A ⊂ V be a full ν-measure Borel set such that for any
t ∈ A and γ ∈ Γ , the derivative dγ ∗ν

dν (t) exists. In the next lemma we introduce a family of harmonic functions which, as
we will show later, are the densities with respect to Lebesgue, of the conditional measures of m̃ on the M × {t} with t ∈ A.

Lemma 2.7. For any t ∈ A, the following function of p ∈ M is harmonic: Ht(p) = ∑
γ ∈Γ μp(γ )

dγ ∗ν
(t).
dν
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Proof. Remark first that by definition, for any t ∈ A and p ∈ M , we have: Ht(p) = dm̃p
dν (t). Since by (5) we have that for

any ξ ∈ Γ , m̃ξ p0 = ξ ∗ m̃p0 and by stationarity, m̃p0 = ν , then m̃ξ p0 = ξ ∗ ν holds for all ξ . Hence, for any t ∈ A and ξ ∈ Γ ,

Ht(ξ p0) = dξ∗ν
dν (t), and by definition, for any t ∈ A and γ ∈ Γ , Ht(γ p0) = ∑

ξ∈Γ μγ p0(ξ)
dm̃ξ p0

dν (t) = ∑
ξ∈Γ μγ p0(ξ)Ht(ξ p0).

And this means that for any t ∈ A, the function γ ∈ Γ 
→ Ht(γ p0) is harmonic for the family (μγ p0)γ ∈Γ (see Section 2.2).
By Theorem 1.3 of Furstenberg–Lyons–Sullivan, the function p 
→ Ht(p) is harmonic. �

Hence, the conditional measures of m̃′ = Ht(p) Leb(p)ν(t) on the M × {t} have harmonic densities with respect to
Lebesgue. We can disintegrate this measure on the {p} × V , and the conditional measures are the m̃′

p = Ht(p)ν(t), and,
by construction, this measure is equal to m̃p . This means that the two measures m̃ and m̃′ are equal. Therefore m̃ is har-
monic, and the proof of the proposition is now over. �

Finally, if z0 ∈ S is the projection of p0, the conditional measure at z0 of the harmonic measure is given by ν (it is a
probability measure because Ht(p0) = 1 for any t). This fact, together with Corollary 2.5, allows us to finish the proof of the
Main Theorem by stating the proposition:

Proposition 2.8. The application that associates to each harmonic measure for F the conditional measure at z0 is a bijection from the
set of harmonic measures for F to the one of measures on V that are μp0 -stationary.

3. Unique ergodicity of harmonic measures

Assume that S is an n-dimensional compact manifold with negative sectional curvature. We consider the associated
family (μp)p∈M on X , and a projective representation ρ : Γ = π1(S) → PSLd(C).

Since S is compact, the two following invariant distances on Γ are equivalent: d1(γ1, γ2) = dist(p0, γ
−1

1 γ2 p0) and
d2(γ1, γ2), the word distance with respect to a symmetric system of generators. But for any representation ρ : Γ → PSLd(C),
if ‖.‖ is an operator norm and C is greater than every log ‖γi‖ for a symmetric system of generators (γi) then for any γ ,
log(‖ρ(γ )‖) � Cd2(Id, γ ). Hence log ‖ρ(γ )‖ = O (dist(p0, γ p0)), and since by Theorem 1.4, μ has finite moment, we have
the following lemma:

Lemma 3.1. The application γ 
→ log ‖ρ(γ )‖ is μp0 -integrable.

Now, assume that the action of Γ is strongly irreducible and contracting, and remember that by Theorem 1.3, the mea-
sure μp0 has full support. By Theorem 1.2, there exists a unique μp0 -stationary measure ν . As a consequence of the above,
we are able to prove the following theorem:

Theorem 3.2. Any foliation obtained by suspending a contracting strongly irreducible representation ρ : π1(S) → PSLd(C), S being a
negatively curved compact manifold, possesses a unique harmonic measure.

Remark that we only assumed the compacticity of the basis in order to have the hypothesis of integrability required by
Theorem 1.2. It can be dropped if we know that the representation is integrable. We claim that this is the case for example
if S is a negatively curved (the curvature does not need to be constant) surface with finite area and if we suppose that over
each geodesic around a cusp, the holonomy map has unitary eigenvalues (we say that it is parabolic). The proof will appear
in a forthcoming paper.
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