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We prove that the linear combinations of functions f0, . . . , fn ∈ H∞ have “few” singular
inner factors, provided that the f j ’s are suitably smooth up to the boundary, while in
general this is no longer true.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On démontre que les combinaisons linéaires des fonctions f0, . . . , fn ∈ H∞ possèdent
« peu » de facteurs singuliers, à condition que les f j soient suffisamment lisses jusqu’au
bord, mais que ceci n’est pas vrai dans le cas général.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The classical uniqueness theorem tells us that, given a non-null holomorphic function f on a domain Ω ⊂ C, the zero
set of f is discrete (i.e., has no accumulation points in Ω). This result admits an amusing extension to linear combinations
of several functions.

Theorem A. Suppose f0, . . . , fn are linearly independent holomorphic functions on a domain Ω ⊂ C. Then there is a discrete subset E
of Ω with the following property: whenever g is a nontrivial linear combination of f0, . . . , fn, the zeros of g whose multiplicity
exceeds n are all contained in E .

Thus, “deep” zeros (i.e., those of multiplicity greater than n) are forbidden for a non-null linear combination
∑n

j=0 λ j f j

except on a “thin” set, which depends only on the f j ’s but not on the λ j ’s. Needless to say, the assumption on the mul-
tiplicities can be neither dropped nor relaxed. Furthermore, the exceptional “thin” sets that arise are the same as those in
the classical uniqueness theorem, which corresponds to the case n = 0.

We strongly suspect that Theorem A must be known. However, having found no appropriate reference, we now give
a quick proof.
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Let W = W ( f0, . . . , fn) denote the Wronskian of the functions f j , so that

W ( f0, . . . , fn) :=

∣∣∣∣∣∣∣∣

f0 f1 . . . fn

f ′
0 f ′

1 . . . f ′
n

. . . . . . . . . . . .

f (n)
0 f (n)

1 . . . f (n)
n

∣∣∣∣∣∣∣∣
. (1)

The f j ’s being linearly independent and holomorphic, it follows that W is non-null (and also holomorphic, of course), so its
zeros form a discrete subset, say E , of Ω . Now, a point z ∈ Ω will be a zero of multiplicity at least n + 1 for

∑n
j=0 λ j f j if

and only if

n∑
j=0

λ j f (k)
j (z) = 0 (k = 0, . . . ,n). (2)

The condition for (2) to have a nontrivial solution (λ0, . . . , λn) is that the Wronskian matrix { f (k)
j (z)}n

j,k=0 be singular, i.e.,
that W (z) = 0. The points z in question are, therefore, precisely those in E .

This proof actually shows that the “deep” zeros of all the nontrivial linear combinations as above coincide with the zeros
of a single holomorphic function, namely, of W .

In what follows, the domain Ω will be the disk D := {z ∈ C: |z| < 1}. We shall be concerned with functions in the Hardy
spaces H p = H p(D) (see, e.g., [7]) and in the Hardy–Sobolev spaces

H p
k := {

f ∈ H p: f (k) ∈ H p}
,

where p > 0 and k is a positive integer. We remark that if the functions f0, . . . , fn from Theorem A are taken to be in H p
n ,

then their Wronskian W is in Hq with a suitable q (in case p � 1, this is true with q = p). The zero set E = W −1(0)

therefore satisfies the Blaschke condition
∑

z∈E (1 − |z|) < ∞, and we may rephrase Theorem A as saying that there exists a
Blaschke product (the one built from E ) with a certain divisibility property.

The purpose of this note is to prove an analog of the above result for singular inner factors. Recall that any nontrivial
function f ∈ H p can be factored canonically as f = F B S , where F is an outer function, B a Blaschke product, and S a
singular inner function (see [7, Chapter II]). The last-mentioned factor is of the form

S(z) = Sμ(z) := exp

{
−

∫
T

ζ + z

ζ − z
dμ(ζ )

}
,

where μ is a (positive) singular measure on the circle T := ∂D. While the Blaschke product B is determined by the zeros
of f in D, the role of the singular factor S is not so easily describable. In a sense, however, such factors can be thought of
as responsible for the “boundary zeros of infinite multiplicity”.

We prove then, in the spirit of Theorem A, that if f0, . . . , fn satisfy the hypothesis of that theorem (with Ω = D) and are
suitably smooth up to T, then there is a single singular inner function S divisible by the singular factor of each nontrivial
linear combination

∑n
j=0 λ j f j . This means that the totality of singular factors resulting from such linear combinations is

rather poor. On the other hand, we give an example to the effect that the smoothness assumption is indispensable; in fact,
it is not enough to assume that the f j ’s are merely in H∞ .

2. Main result

Theorem 2.1. Let f0, . . . , fn be linearly independent functions in H1
n . Then there is a singular inner function S with the following

property: whenever λ0, . . . , λn are complex numbers with
∑n

j=0 |λ j | > 0, the singular factor of
∑n

j=0 λ j f j divides S.

Proof. Let

g =
n∑

j=0

λ j f j (3)

be a nontrivial linear combination of the f j ’s, so that at least one of the coefficients (say, λk) is nonzero. Recalling the
notation (1) for the Wronskian, put

W := W ( f0, . . . , fn)

and

Wk := W ( f0, . . . , fk−1, g, fk+1, . . . , fn).
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It should be noted that W �≡ 0, because the f j ’s are linearly independent holomorphic functions, and also that W ∈ H1. To

verify the latter claim, expand the determinant (1) along its last row and observe that the derivatives f (k)
j with 0 � k �

n − 1 are all in H∞ . Furthermore, it follows from (3) that Wk = λk W . In particular, the inner factors of W and Wk are
identical.

Now, if S g is the singular factor of g , then the inner factors of g′, g′′, . . . , g(n) are all divisible by S g . (Indeed, it is
known that for every h ∈ H1

1, the singular factor of h divides that of h′; see [1, Theorem 1] or [2, Lemma 2].) Expanding the
determinant Wk along its kth column, (g, g′, . . . , g(n))T , and noting that the corresponding cofactors are in H1, we conclude
that S g divides the inner factor of Wk , or equivalently, of W . The function S = SW , defined as the singular factor of W , has
therefore the required property. �
3. An example

We borrow an idea from [2]. Let θ be a nonconstant inner function that omits an uncountable set of values E ⊂ D.
(The existence of such a function with values in D \ E , for any prescribed closed set E of zero logarithmic capacity, is
established in [3, Chapter 2].) For each α ∈ E , one has

θ − α = Sα · (1 − ᾱθ), (4)

with

Sα := θ − α

1 − ᾱθ
.

Here, Sα is a singular inner function (because α is not in the range of θ ), while the other factor in (4) is outer.
Write μα for the singular measure associated with Sα . For μα-almost every ζ ∈ T, we have Sα(z) → 0, and hence

θ(z) → α, as z → ζ nontangentially; see [7, Chapter II]. It follows that the supports of μα ’s, with α ∈ E , are pairwise
disjoint. The set E being uncountable and the measures μα nonzero, we readily deduce that no finite Borel measure μ on
T can satisfy μ�μα for all α ∈ E . Consequently, no singular inner function is divisible by every Sα .

Since Sα is the singular factor of θ − α, which is a linear combination of f0 = θ and f1 = 1, we see that these f j ’s
violate the conclusion of Theorem 2.1 with n = 1.

4. Concluding remarks

(1) It would be interesting to know if the space H1
n in Theorem 2.1 can be replaced by a larger smoothness class (say, by

H p
n with a p < 1), and moreover, to find the optimal smoothness condition on the functions f j .

(2) The author’s recent papers [4–6] contain some related work, where smoothness properties of the Wronskian play a
role when proving various extensions of the Mason–Stothers abc theorem.
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