

Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Algebra/Algebraic Geometry

Projective geometry for blueprints

Geometrie projective pour les canevas bleus

Javier López Peña^{a, 1}, Oliver Lorscheid^b

^a Department of Mathematics, University College London, 25 Gower Street, London WC1E 6BT, United Kingdom
^b Department of Mathematics, University of Wuppertal, Gaußstr. 20, 42097 Wuppertal, Germany

ARTICLE INFO

Article history: Received 8 March 2012 Accepted after revision 27 April 2012 Available online 17 May 2012

Presented by Christophe Soulé

ABSTRACT

In this Note, we generalize the Proj-construction from usual schemes to blue schemes. This yields the definition of projective space and projective varieties over a blueprint. In particular, it is possible to descend closed subvarieties of a projective space to a canonical \mathbb{F}_1 -model. We discuss this in case of the Grassmannian Gr(2, 4).

© 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.

RÉSUMÉ

Dans cette Note, nous généralisons la Proj-construction des schémas usuels aux schémas bleus. Cela entraine la définition d'espace projectif et de variétés projectives sur un canevas bleu. En particulier, il est possible de descendre une sous-variété fermée d'un espace projectif en un \mathbb{F}_1 -modèle canonique. Nous discutons cela dans le cas de la Grassmannienne Gr(2, 4).

© 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Blueprints are a common generalization of commutative (semi)rings and monoids. The associated geometric objects, blue schemes, are therefore a common generalization of usual scheme theory and \mathbb{F}_1 -geometry (as considered by Kato [5], Deitmar [3] and Connes–Consani [2]). The possibility of forming semiring schemes allows us to talk about idempotent schemes and tropical schemes (cf. [11]). All this is worked out in [9].

It is known, though not covered in literature yet, that the Proj-construction from usual algebraic geometry has an analogue in \mathbb{F}_1 -geometry (after Kato, Deitmar and Connes–Consani). In this note we describe a generalization of this to blueprints. Privately, Koen Thas has announced a treatment of Proj for monoidal schemes (see [13]).

We follow the notations and conventions of [10]. Namely, all blueprints that appear in this note are proper and with a zero. We remark that the following constructions can be carried out for the more general notion of a blueprint as considered in [9]; the reason that we restrict to proper blueprints with a zero is that this allows us to adopt a notation that is common in \mathbb{F}_1 -geometry.

Namely, we denote by \mathbb{A}_B^n the (blue) affine *n*-space Spec($B[T_1, \ldots, T_n]$) over a blueprint *B*. In case of a ring, this does not equal the usual affine *n*-space since $B[T_1, \ldots, T_n]$ is not closed under addition. Therefore, we denote the usual affine

E-mail addresses: jlp@math.ucl.ac.uk (J. López Peña), lorscheid@math.uni-wuppertal.de (O. Lorscheid).

¹ J. López Peña's research was supported by MCIM grant MTM2010-20940-C02-01, research group FQM-266 (Junta de Andalucía) and Max-Planck Institute for Mathematics in Bonn.

¹⁶³¹⁻⁰⁷³X/\$ – see front matter $\,\,\odot$ 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences. http://dx.doi.org/10.1016/j.crma.2012.05.001

n-space over a ring *B* by ${}^+\mathbb{A}^n_B = \text{Spec}(B[T_1, \dots, T_n]^+)$. Similarly, we use a superscript "+" for the usual projective space ${}^+\mathbb{P}^n_B$ and the usual Grassmannian $\text{Gr}(k, n)^+_B$ over a ring *B*.

2. Graded blueprints and Proj

Let *B* be a blueprint and *M* a subset of *B*. We say that *M* is *additively closed in B* if for all additive relations $b \equiv \sum a_i$ with $a_i \in M$ also *b* is an element of *M*. Note that, in particular, 0 is an element of *M*. A *graded blueprint* is a blueprint *B* together with additively closed subsets B_i for $i \in \mathbb{N}$ such that $1 \in B_0$, such that for all $i, j \in \mathbb{N}$ and $a \in B_i, b \in B_j$, the product *ab* is an element of B_{i+j} and such that for every $b \in B$, there are a unique finite subset *I* of \mathbb{N} and unique non-zero elements $a_i \in B_i$ for every $i \in I$ such that $b = \sum a_i$. An element of $\bigcup_{i \ge 0} B_i$ is called *homogeneous*. If $a \in B_i$ is non-zero, then we say, more specifically, that *a* is *homogeneous of degree i*.

We collect some immediate facts for a graded blueprint *B* as above. The subset B_0 is multiplicatively closed, i.e. B_0 can be seen as a subblueprint of *B*. The subblueprint B_0 equals *B* if and only if for all i > 0, $B_i = \{0\}$. In this case we say that *B* is *trivially graded*. By the uniqueness of the decomposition into homogeneous elements, we have $B_i \cap B_j = \{0\}$ for $i \neq j$. This means that the union $\bigcup_{i \ge 0} B_i$ has the structure of a wedge product $\bigvee_{i \ge 0} B_i$. Since $\bigvee_{i \ge 0} B_i$ is multiplicatively closed, it can be seen as a subblueprint of *B*. We define $B_{\text{hom}} = \bigvee_{i \ge 0} B_i$ and call the subblueprint B_{hom} the *homogeneous part of B*.

Let *S* be a multiplicative subset of *B*. If *b*/*s* is an element of the localization $S^{-1}B$ where *f* is homogeneous of degree *i* and *s* is homogeneous of degree *j*, then we say that *b*/*s* is a homogeneous element of degree i - j. We define $S^{-1}B_0$ as the subset of homogeneous elements of degree 0. It is multiplicatively closed, and inherits thus a subblueprint structure from $S^{-1}B$. If *S* is the complement of a prime ideal \mathfrak{p} , then we write $B_{(\mathfrak{p})}$ for the subblueprint $(B_{\mathfrak{p}})_0$ of homogeneous elements of degree 0 in $B_{\mathfrak{p}}$.

An ideal *I* of a graded blueprint *B* is called *homogeneous* if it is generated by homogeneous elements, i.e. if for every $c \in I$, there are homogeneous elements $p_i, q_j \in I$ and elements $a_i, b_j \in B$ and an additive relation $\sum a_i p_i + c = \sum b_j q_j$ in *B*.

Let *B* be a graded blueprint. Then we define Proj *B* as the set of all homogeneous prime ideals \mathfrak{p} of *B* that do not contain $B_{\text{hom}}^+ = \bigvee_{i>0} B_i$. The set X = Proj B comes together with the topology that is defined by the basis

$$U_h = \{ \mathfrak{p} \in X \mid h \notin \mathfrak{p} \}$$

where *h* ranges through B_{hom} and with a structure sheaf \mathcal{O}_X that is the sheafification of the association $U_h \mapsto B[h^{-1}]_0$ where $B[h^{-1}]$ is the localization of *B* at $S = \{h^i\}_{i \ge 0}$.

Note that if B is a ring, the above definitions yield the usual construction of Proj B for graded rings. In complete analogy to the case of graded rings, one proves the following theorem:

Theorem 1. The space X = Proj B together with \mathcal{O}_X is a blue scheme. The stalk at a point $\mathfrak{p} \in \text{Proj } B$ is $\mathcal{O}_{x,\mathfrak{p}} = B_{(\mathfrak{p})}$. If $h \in B^+_{\text{hom}}$, then $U_h \simeq \text{Spec } B[h^{-1}]_0$. The inclusions $B_0 \hookrightarrow B[h^{-1}]_0$ yield morphisms $\text{Spec } B[h^{-1}]_0 \to \text{Spec } B_0$, which glue to a structural morphism $\text{Proj } B \to \text{Spec } B_0$. \Box

If *B* is a graded blueprint, then the associated semiring B^+ inherits a grading. Namely, let $B_{\text{hom}} = \bigvee_{i \ge 0} B_i$ the homogeneous part of *B*. Then we can define B_i^+ as the additive closure of B_i in B^+ , i.e. as the set of all $b \in B$ such that there is an additive relation of the form $b \equiv \sum a_k$ in *B* with $a_k \in B_i$. Then $\bigvee B_i^+$ defines a grading of B^+ . Similarly, the grading of *B* induces a grading on a tensor product $B \otimes_C D$ with respect to blueprint morphisms $C \to B$ and $C \to D$ under the assumption that the image of $C \to B$ is contained in B_0 . Consequently, a grading of *B* implies a grading of $B_{\text{inv}} = B \otimes_{\mathbb{F}_1} \mathbb{F}_{1^2}$ (see [9, Lemma 1.4] and [10, p. 11]) and of the ring $B_{\mathbb{Z}}^+ = B_{\text{inv}}^+$. Analogously, if both *B* and *D* are graded and the image of *C* lies in both B_0 and D_0 , then $B \otimes_C D$ inherits a grading from the gradings of *B* and *D*.

3. Projective space

The functor Proj allows the definition of the projective space \mathbb{P}_B^n over a blueprint *B*. Namely, the free blueprint $C = B[T_0, \ldots, T_n]$ over *B* comes together with a natural grading (cf. [9, Section 1.12] for the definition of free blueprints). Namely, C_i consists of all monomials $bT_0^{e_0} \cdots T_n^{e_n}$ such that $e_0 + \cdots + e_n = i$ where $b \in B$. Note that $C_0 = B$ and $C_{\text{hom}} = C$. The projective space \mathbb{P}_B^n is defined as Proj $B[T_0, \ldots, T_n]$. It comes together with a structure morphism $\mathbb{P}_B^n \to \text{Spec } B$. In case of $B = \mathbb{F}_1$, the projective space $\mathbb{P}_{\mathbb{F}_1}^n$ is the monoidal scheme that is known from \mathbb{F}_1 -geometry (see [4], [1, Section 2.14]) and [10, Ev. 16]). The transferred structure for the structure definition of the structu

In case of $B = \mathbb{F}_1$, the projective space $\mathbb{P}_{\mathbb{F}_1}^n$ is the monoidal scheme that is known from \mathbb{F}_1 -geometry (see [4], [1, Section 3.1.4]) and [10, Ex. 1.6]). The topological space of $\mathbb{P}_{\mathbb{F}_1}^n$ is finite. Its points correspond to the homogeneous prime ideals $(S_i)_{i \in I}$ of $\mathbb{F}_1[S_0, \ldots, S_n]$ where I ranges through all proper subsets of $\{0, \ldots, n\}$.

In case of a ring *B*, the projective space \mathbb{P}_B^n does not coincide with the usual projective space since the free blueprint $B[S_0, \ldots, S_n]$ is not a ring, but merely the blueprint of all monomials of the form $bS_0^{e_0} \cdots S_n^{e_n}$ with $b \in B$. However, the associated scheme ${}^+\mathbb{P}_B^n = (\mathbb{P}_B^n)^+$ coincides with the usual projective space over *B*, which equals Proj $B[S_0, \ldots, S_n]^+$.

4. Closed subschemes

Let \mathcal{X} be a scheme of finite type. By an \mathbb{F}_1 -model of \mathcal{X} we mean a blue scheme X of finite type such that $X^+_{\mathbb{Z}}$ is isomorphic to \mathcal{X} . Since a finitely generated \mathbb{Z} -algebra is, by definition, generated by a finitely generated multiplicative

Fig. 1. Points of the Grassmannian $Gr(2, 4)_{\mathbb{F}_1}$. Generator x_{ij} belonging to an ideal is depicted as segment i-j in $\begin{pmatrix} 4 \\ 1 \end{pmatrix} > 2$.

subset as a \mathbb{Z} -module, every scheme of finite type has an \mathbb{F}_1 -model. It is, on the contrary, true that a scheme of finite type possesses a large number of \mathbb{F}_1 -models.

Given a scheme \mathcal{X} with an \mathbb{F}_1 -model X, we can associate to every closed subscheme \mathcal{Y} of \mathcal{X} the following closed subscheme Y of X, which is an \mathbb{F}_1 -model of \mathcal{Y} . In case that $X = \operatorname{Spec} B$ is the spectrum of a blueprint $B = A/\!/\mathcal{R}$, and thus $\mathcal{X} \simeq \operatorname{Spec} B_{\mathbb{Z}}^+$ is an affine scheme, we can define Y as $\operatorname{Spec} C$ for $C = A/\!/\mathcal{R}(Y)$ where $\mathcal{R}(Y)$ is the pre-addition that contains $\sum a_i \equiv \sum b_j$ whenever $\sum a_i = \sum b_j$ holds in the coordinate ring $\Gamma \mathcal{Y}$ of \mathcal{Y} . This is a process that we used already in [10, Section 3].

Since localizations commute with additive closures, i.e. $(S^{-1}B)_{\mathbb{Z}}^+ = S^{-1}(B_{\mathbb{Z}}^+)$ where *S* is a multiplicative subset of *B*, the above process is compatible with the restriction to affine opens $U \subset X$. This means that given $U = \operatorname{Spec}(S^{-1}B)$, which is an \mathbb{F}_1 -model for $\mathcal{X}' = U_{\mathbb{Z}}^+$, then the \mathbb{F}_1 -model *Y'* that is associated to the closed subscheme $\mathcal{Y}' = \mathcal{X}' \times_{\mathcal{X}} \mathcal{Y}$ of \mathcal{X}' by the above process is the spectrum of the blueprint $S^{-1}C$. Consequently, we can associate with every closed subscheme \mathcal{Y} of a scheme \mathcal{X} with an \mathbb{F}_1 -model *X* a closed subscheme *Y* of *X*, which is an \mathbb{F}_1 -model of \mathcal{Y} ; namely, we apply the above process to all affine open subschemes of \mathcal{X} and glue them together, which is possible since additive closures commute with localizations.

In case of a projective variety, i.e. a closed subscheme \mathcal{Y} of a projective space ${}^+\mathbb{P}^n_{\mathbb{Z}}$, we derive the following description of the associated \mathbb{F}_1 -model Y in $\mathbb{P}^n_{\mathbb{F}_1}$ by homogeneous coordinate rings. Let C be the homogeneous coordinate ring of \mathcal{Y} , which is a quotient of $\mathbb{Z}[S_0, \ldots, S_n]^+$ by a homogeneous ideal I. Let \mathcal{R} be the pre-addition on $\mathbb{F}_1[S_0, \ldots, S_n]$ that consists of all relations $\sum a_i \equiv \sum b_j$ such that $\sum a_i = \sum b_j$ in C. Then $B = \mathbb{F}_1[S_0, \ldots, S_n]/\mathcal{R}$ inherits a grading from $\mathbb{F}_1[S_0, \ldots, S_n]$ by defining B_i as the image of $\mathbb{F}_1[S_0, \ldots, S_n]_i$ in B. Note that $B \subset C$ and that the sets B_i equal the intersections $B_i = C_i \cap B$ for $i \ge 0$ where C_i is the homogeneous part of degree i of C. Then the \mathbb{F}_1 -model Y of \mathcal{Y} equals Proj B.

5. \mathbb{F}_1 -models for Grassmannians

One of the simplest examples of projective varieties that is not toric is the Grassmannian Gr(2, 4). The problem of finding \mathbb{F}_1 -models for Grassmannians was originally posed by Soulé in [12], and solved by the authors by obtaining a torification from the Schubert cell decomposition (cf. [8,7]). In this note, we present \mathbb{F}_1 -models for Grassmannians as projective varieties defined through (homogeneous) blueprints. The proposed construction fits within a more general framework for obtaining blueprints and totally positive blueprints from cluster data (cf. [6]).

Classically, the coordinate ring for Gr(k, n) is obtained by quotienting out the homogeneous coordinate ring of the projective space $\mathbb{P}^{\binom{n}{k}-1}$ by the homogeneous ideal generated by the Plücker relations. A similar construction can be carried out using the framework of (graded) blueprints. We make that construction explicit for Gr(2, 4).

Define the blueprint $\mathcal{O}_{\mathbb{F}_1}(\operatorname{Gr}(2,4)) = \mathbb{F}_1[x_{12}, x_{13}, x_{14}, x_{23}, x_{24}, x_{34}]/\!/\mathcal{R}$ where the congruence \mathcal{R} is generated by the Plücker relation $x_{12}x_{34} + x_{14}x_{23} \equiv x_{13}x_{24}$ (the signs have been picked to ensure that the totally positive part of the Grassmannian is preserved, cf. [6]). Since \mathcal{R} is generated by a homogeneous relation, $\mathcal{O}_{\mathbb{F}_1}(\operatorname{Gr}(2,4))$ inherits a grading from the canonical morphism

 $\pi: \mathbb{F}_1[x_{12}, x_{13}, x_{14}, x_{23}, x_{24}, x_{34}] \longrightarrow \mathbb{F}_1[x_{12}, x_{13}, x_{14}, x_{23}, x_{24}, x_{34}] /\!\!/ \mathcal{R}.$

Let $\operatorname{Gr}(2,4)_{\mathbb{F}_1} := \operatorname{Proj}(\mathcal{O}_{\mathbb{F}_1}(\operatorname{Gr}(2,4)))$. The base extension $\operatorname{Gr}(2,4)_{\mathbb{Z}}^+$ is the usual Grassmannian, and π defines a closed embedding of $\operatorname{Gr}(2,4)_{\mathbb{F}_1}$ into $\mathbb{P}^5_{\mathbb{F}_1}$, which extends to the classical Plücker embedding $\operatorname{Gr}(2,4)_{\mathbb{Z}}^+ \hookrightarrow^+ \mathbb{P}^5_{\mathbb{Z}}$. Homogeneous prime ideals in $\mathcal{O}_{\mathbb{F}_1}(\operatorname{Gr}(2,4))$ are described by their generators as the proper subsets $I \subsetneq \{x_{12}, x_{13}, x_{14}, x_{23}, x_{14}, x_{23}, x_{14}, x_{23}, x_{14}, x_{23}, x_{14}, x_{23}, x_{14}, x_{1$

Homogeneous prime ideals in $\mathcal{O}_{\mathbb{F}_1}(Gr(2, 4))$ are described by their generators as the proper subsets $I \subsetneq \{x_{12}, x_{13}, x_{14}, x_{23}, x_{24}, x_{25}\}$ such that *I* is either contained in one of the sets $\{x_{12}, x_{34}\}, \{x_{14}, x_{23}\}, \{x_{13}, x_{24}\}$, or otherwise *I* has a non-empty intersection with all three of them. In other words, *I* cannot contain elements in two of the above sets without also containing an element of the third one. Gr $(2, 4)_{\mathbb{F}_1}$ is depicted in Fig. 1. It consists of 6 + 12 + 11 + 6 + 1 = 36 prime ideals of ranks

0, 1, 2, 3 and 4, respectively (cf. [10, Def. 2.3] for the definition of rank), thus resulting in a model essentially different to the one presented in [8], which had 35 points corresponding to the coefficients of $N_{Gr(2,4)}(q) = 6 + 12(q-1) + 11(q-1)^2 + 5(q-1)^3 + 1(q-1)^4$. In spite of arising from different constructions, both \mathbb{F}_1 -models for Gr(2, 4) have $6 = \binom{4}{2}$ closed points, supporting the naive combinatorial interpretation of Gr(2, 4) \mathbb{F}_1 . These six points correspond to the \mathbb{F}_1 -rational Tits points of Gr(2, 4) \mathbb{F}_1 , which reflect the naive notion of \mathbb{F}_1 -rational points of an \mathbb{F}_1 -scheme (cf. [10, Section 2.2]).

As in the classical setting, the Grassmannian $Gr(2, 4)_{\mathbb{F}_1}$ does admit a covering by six \mathbb{F}_1 -models of affine 4-space, which correspond to the open subsets of $Gr(2, 4)_{\mathbb{F}_1}$ where one of the generators is non-zero. However, these \mathbb{F}_1 -models of affine 4-space are not the standard model $\mathbb{A}_{\mathbb{F}_1}^4 = \operatorname{Spec}(\mathbb{F}_1[a, b, c, d])$, but the "2 × 2-matrices" $M_{2,\mathbb{F}_1} = \operatorname{Spec}(\mathbb{F}_1[a, b, c, d, D]//$ $\langle ad \equiv bc + D \rangle$) in case that one of x_{12} , x_{34} , x_{14} or x_{23} is non-zero, and the "twisted 2 × 2-matrices" $M_{2,\mathbb{F}_1}^\tau = \operatorname{Spec}(\mathbb{F}_1[a, b, c, d, D]//\langle ad + bc \equiv D \rangle)$ in case that one of x_{13} or x_{24} is non-zero.

References

- [1] C. Chu, O. Lorscheid, R. Santhanam, Sheaves and *K*-theory for F₁-schemes, Adv. Math. 229 (4) (2012) 2239–2286.
- [2] A. Connes, C. Consani, Characteristic 1, entropy and the absolute point, preprint, arXiv:0911.3537v1, 2009.
- [3] A. Deitmar, Schemes over F₁, in: Number Fields and Function Fields–Two Parallel Worlds, in: Progr. Math., vol. 239, Birkhäuser Boston, Boston, MA, 2005, pp. 87–100.
- [4] A. Deitmar, \mathbb{F}_1 -schemes and toric varieties, Beiträge Algebra Geom. 49 (2) (2008) 517–525.
- [5] K. Kato, Toric singularities, Amer. J. Math. 116 (5) (1994) 1073-1099.
- [6] J. López Peña, \mathbb{F}_1 -models for cluster algebras and total positivity, in preparation.
- [7] J. López Peña, O. Lorscheid, Mapping F₁-land an overview of geometries over the field with one element, in: Noncommutative Geometry, Arithmetic and Related Topics, Johns Hopkins University Press, 2011, pp. 241–265.
- [8] J. López Peña, O. Lorscheid, Torified varieties and their geometries over 𝔽₁, Math. Z. 267 (3-4) (2011) 605-643.
- [9] O. Lorscheid, The geometry of blueprints. Part I: Algebraic background and scheme theory, Adv. Math. 229 (3) (2012) 1804-1846.
- [10] O. Lorscheid, The geometry of blueprints. Part II: Tits-Weyl models of algebraic groups, preprint, arXiv:1201.1324, 2012.
- [11] G. Mikhalkin, Tropical geometry, unpublished notes, 2010.
- [12] C. Soulé, Les variétés sur le corps à un élément, Mosc. Math. J. 4 (1) (2004) 217-244, 312.
- [13] K. Thas, Notes on \mathbb{F}_1 , I. Combinatorics of \mathcal{D}_0 -schemes and \mathbb{F}_1 -geometry, in preparation.