Projective geometry for blueprints

Geometrie projective pour les canevas bleus

Javier López Peña ${ }^{\text {a, }}$, Oliver Lorscheid ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, University College London, 25 Gower Street, London WC1E 6BT, United Kingdom
b Department of Mathematics, University of Wuppertal, Gaußstr. 20, 42097 Wuppertal, Germany

ARTICLE INFO

Article history:

Received 8 March 2012
Accepted after revision 27 April 2012
Available online 17 May 2012
Presented by Christophe Soulé

Abstract

In this Note, we generalize the Proj-construction from usual schemes to blue schemes. This yields the definition of projective space and projective varieties over a blueprint. In particular, it is possible to descend closed subvarieties of a projective space to a canonical \mathbb{F}_{1}-model. We discuss this in case of the Grassmannian $\operatorname{Gr}(2,4)$.

© 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.

RÉS U M É

Dans cette Note, nous généralisons la Proj-construction des schémas usuels aux schémas bleus. Cela entraine la définition d'espace projectif et de variétés projectives sur un canevas bleu. En particulier, il est possible de descendre une sous-variété fermée d'un espace projectif en un \mathbb{F}_{1}-modèle canonique. Nous discutons cela dans le cas de la Grassmannienne $\operatorname{Gr}(2,4)$.
(C) 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Blueprints are a common generalization of commutative (semi)rings and monoids. The associated geometric objects, blue schemes, are therefore a common generalization of usual scheme theory and \mathbb{F}_{1}-geometry (as considered by Kato [5], Deitmar [3] and Connes-Consani [2]). The possibility of forming semiring schemes allows us to talk about idempotent schemes and tropical schemes (cf. [11]). All this is worked out in [9].

It is known, though not covered in literature yet, that the Proj-construction from usual algebraic geometry has an analogue in \mathbb{F}_{1}-geometry (after Kato, Deitmar and Connes-Consani). In this note we describe a generalization of this to blueprints. Privately, Koen Thas has announced a treatment of Proj for monoidal schemes (see [13]).

We follow the notations and conventions of [10]. Namely, all blueprints that appear in this note are proper and with a zero. We remark that the following constructions can be carried out for the more general notion of a blueprint as considered in [9]; the reason that we restrict to proper blueprints with a zero is that this allows us to adopt a notation that is common in \mathbb{F}_{1}-geometry.

Namely, we denote by \mathbb{A}_{B}^{n} the (blue) affine n-space $\operatorname{Spec}\left(B\left[T_{1}, \ldots, T_{n}\right]\right)$ over a blueprint B. In case of a ring, this does not equal the usual affine n-space since $B\left[T_{1}, \ldots, T_{n}\right]$ is not closed under addition. Therefore, we denote the usual affine

[^0]n-space over a ring B by ${ }^{+} \mathbb{A}_{B}^{n}=\operatorname{Spec}\left(B\left[T_{1}, \ldots, T_{n}\right]^{+}\right)$. Similarly, we use a superscript " + " for the usual projective space $+\mathbb{P}_{B}^{n}$ and the usual Grassmannian $\operatorname{Gr}(k, n)_{B}^{+}$over a ring B.

2. Graded blueprints and Proj

Let B be a blueprint and M a subset of B. We say that M is additively closed in B if for all additive relations $b \equiv \sum a_{i}$ with $a_{i} \in M$ also b is an element of M. Note that, in particular, 0 is an element of M. A graded blueprint is a blueprint B together with additively closed subsets B_{i} for $i \in \mathbb{N}$ such that $1 \in B_{0}$, such that for all $i, j \in \mathbb{N}$ and $a \in B_{i}, b \in B_{j}$, the product $a b$ is an element of B_{i+j} and such that for every $b \in B$, there are a unique finite subset I of \mathbb{N} and unique non-zero elements $a_{i} \in B_{i}$ for every $i \in I$ such that $b=\sum a_{i}$. An element of $\bigcup_{i \geqslant 0} B_{i}$ is called homogeneous. If $a \in B_{i}$ is non-zero, then we say, more specifically, that a is homogeneous of degree i.

We collect some immediate facts for a graded blueprint B as above. The subset B_{0} is multiplicatively closed, i.e. B_{0} can be seen as a subblueprint of B. The subblueprint B_{0} equals B if and only if for all $i>0, B_{i}=\{0\}$. In this case we say that B is trivially graded. By the uniqueness of the decomposition into homogeneous elements, we have $B_{i} \cap B_{j}=\{0\}$ for $i \neq j$. This means that the union $\bigcup_{i \geqslant 0} B_{i}$ has the structure of a wedge product $\bigvee_{i \geqslant 0} B_{i}$. Since $\bigvee_{i \geqslant 0} B_{i}$ is multiplicatively closed, it can be seen as a subblueprint of B. We define $B_{\text {hom }}=\bigvee_{i \geqslant 0} B_{i}$ and call the subblueprint $B_{\text {hom }}$ the homogeneous part of B.

Let S be a multiplicative subset of B. If b / s is an element of the localization $S^{-1} B$ where f is homogeneous of degree i and s is homogeneous of degree j, then we say that b / s is a homogeneous element of degree $i-j$. We define $S^{-1} B_{0}$ as the subset of homogeneous elements of degree 0 . It is multiplicatively closed, and inherits thus a subblueprint structure from $S^{-1} B$. If S is the complement of a prime ideal \mathfrak{p}, then we write $B_{(\mathfrak{p})}$ for the subblueprint $\left(B_{\mathfrak{p}}\right)_{0}$ of homogeneous elements of degree 0 in $B_{\mathfrak{p}}$.

An ideal I of a graded blueprint B is called homogeneous if it is generated by homogeneous elements, i.e. if for every $c \in I$, there are homogeneous elements $p_{i}, q_{j} \in I$ and elements $a_{i}, b_{j} \in B$ and an additive relation $\sum a_{i} p_{i}+c=\sum b_{j} q_{j}$ in B.

Let B be a graded blueprint. Then we define Proj B as the set of all homogeneous prime ideals \mathfrak{p} of B that do not contain $B_{\text {hom }}^{+}=\bigvee_{i>0} B_{i}$. The set $X=\operatorname{Proj} B$ comes together with the topology that is defined by the basis

$$
U_{h}=\{\mathfrak{p} \in X \mid h \notin \mathfrak{p}\}
$$

where h ranges through $B_{\text {hom }}$ and with a structure sheaf \mathcal{O}_{X} that is the sheafification of the association $U_{h} \mapsto B\left[h^{-1}\right]_{0}$ where $B\left[h^{-1}\right]$ is the localization of B at $S=\left\{h^{i}\right\}_{i \geqslant 0}$.

Note that if B is a ring, the above definitions yield the usual construction of Proj B for graded rings. In complete analogy to the case of graded rings, one proves the following theorem:

Theorem 1. The space $X=\operatorname{Proj} B$ together with \mathcal{O}_{X} is a blue scheme. The stalk at a point $\mathfrak{p} \in \operatorname{Proj} B$ is $\mathcal{O}_{x, \mathfrak{p}}=B_{(\mathfrak{p})}$. If $h \in B_{\text {hom }}^{+}$, then $U_{h} \simeq \operatorname{Spec} B\left[h^{-1}\right]_{0}$. The inclusions $B_{0} \hookrightarrow B\left[h^{-1}\right]_{0}$ yield morphisms Spec $B\left[h^{-1}\right]_{0} \rightarrow \operatorname{Spec} B_{0}$, which glue to a structural morphism Proj $B \rightarrow$ Spec B_{0}.

If B is a graded blueprint, then the associated semiring B^{+}inherits a grading. Namely, let $B_{\text {hom }}=\bigvee_{i \geqslant 0} B_{i}$ the homogeneous part of B. Then we can define B_{i}^{+}as the additive closure of B_{i} in B^{+}, i.e. as the set of all $b \in B$ such that there is an additive relation of the form $b \equiv \sum a_{k}$ in B with $a_{k} \in B_{i}$. Then $\bigvee B_{i}^{+}$defines a grading of B^{+}. Similarly, the grading of B induces a grading on a tensor product $B \otimes_{C} D$ with respect to blueprint morphisms $C \rightarrow B$ and $C \rightarrow D$ under the assumption that the image of $C \rightarrow B$ is contained in B_{0}. Consequently, a grading of B implies a grading of $B_{\text {inv }}=B \otimes_{\mathbb{F}_{1}} \mathbb{F}_{1^{2}}$ (see [9, Lemma 1.4] and [10, p. 11]) and of the ring $B_{\mathbb{Z}}^{+}=B_{\text {inv }}^{+}$. Analogously, if both B and D are graded and the image of C lies in both B_{0} and D_{0}, then $B \otimes_{C} D$ inherits a grading from the gradings of B and D.

3. Projective space

The functor Proj allows the definition of the projective space \mathbb{P}_{B}^{n} over a blueprint B. Namely, the free blueprint $C=$ $B\left[T_{0}, \ldots, T_{n}\right]$ over B comes together with a natural grading (cf. [9, Section 1.12] for the definition of free blueprints). Namely, C_{i} consists of all monomials $b T_{0}^{e_{0}} \cdots T_{n}^{e_{n}}$ such that $e_{0}+\cdots+e_{n}=i$ where $b \in B$. Note that $C_{0}=B$ and $C_{\text {hom }}=C$. The projective space \mathbb{P}_{B}^{n} is defined as $\operatorname{Proj} B\left[T_{0}, \ldots, T_{n}\right]$. It comes together with a structure morphism $\mathbb{P}_{B}^{n} \rightarrow \operatorname{Spec} B$.

In case of $B=\mathbb{F}_{1}$, the projective space $\mathbb{P}_{\mathbb{F}_{1}}^{n}$ is the monoidal scheme that is known from \mathbb{F}_{1}-geometry (see [4], [1, Section 3.1.4]) and [10, Ex. 1.6]). The topological space of $\mathbb{P}_{\mathbb{F}_{1}}^{n}$ is finite. Its points correspond to the homogeneous prime ideals $\left(S_{i}\right)_{i \in I}$ of $\mathbb{F}_{1}\left[S_{0}, \ldots, S_{n}\right]$ where I ranges through all proper subsets of $\{0, \ldots, n\}$.

In case of a ring B, the projective space \mathbb{P}_{B}^{n} does not coincide with the usual projective space since the free blueprint $B\left[S_{0}, \ldots, S_{n}\right]$ is not a ring, but merely the blueprint of all monomials of the form $b S_{0}^{e_{0}} \ldots S_{n}^{e_{n}}$ with $b \in B$. However, the associated scheme ${ }^{+} \mathbb{P}_{B}^{n}=\left(\mathbb{P}_{B}^{n}\right)^{+}$coincides with the usual projective space over B, which equals Proj $B\left[S_{0}, \ldots, S_{n}\right]^{+}$.

4. Closed subschemes

Let \mathcal{X} be a scheme of finite type. By an \mathbb{F}_{1}-model of \mathcal{X} we mean a blue scheme X of finite type such that $X_{\mathbb{Z}}^{+}$is isomorphic to \mathcal{X}. Since a finitely generated \mathbb{Z}-algebra is, by definition, generated by a finitely generated multiplicative

Fig. 1. Points of the Grassmannian $\operatorname{Gr}(2,4)_{\mathbb{F}_{1}}$. Generator $x_{i j}$ belonging to an ideal is depicted as segment $i-j$ in
subset as a \mathbb{Z}-module, every scheme of finite type has an \mathbb{F}_{1}-model. It is, on the contrary, true that a scheme of finite type possesses a large number of \mathbb{F}_{1}-models.

Given a scheme \mathcal{X} with an \mathbb{F}_{1}-model X, we can associate to every closed subscheme \mathcal{Y} of \mathcal{X} the following closed subscheme Y of X, which is an \mathbb{F}_{1}-model of \mathcal{Y}. In case that $X=\operatorname{Spec} B$ is the spectrum of a blueprint $B=A / / \mathcal{R}$, and thus $\mathcal{X} \simeq \operatorname{Spec} B_{\mathbb{Z}}^{+}$is an affine scheme, we can define Y as Spec C for $C=A / / \mathcal{R}(Y)$ where $\mathcal{R}(Y)$ is the pre-addition that contains $\sum a_{i} \equiv \sum b_{j}$ whenever $\sum a_{i}=\sum b_{j}$ holds in the coordinate ring $\Gamma \mathcal{Y}$ of \mathcal{Y}. This is a process that we used already in [10, Section 3].

Since localizations commute with additive closures, i.e. $\left(S^{-1} B\right)_{\mathbb{Z}}^{+}=S^{-1}\left(B_{\mathbb{Z}}^{+}\right)$where S is a multiplicative subset of B, the above process is compatible with the restriction to affine opens $U \subset X$. This means that given $U=\operatorname{Spec}\left(S^{-1} B\right)$, which is an \mathbb{F}_{1}-model for $\mathcal{X}^{\prime}=U_{\mathbb{Z}}^{+}$, then the \mathbb{F}_{1}-model Y^{\prime} that is associated to the closed subscheme $\mathcal{Y}^{\prime}=\mathcal{X}^{\prime} \times \mathcal{X} \mathcal{Y}$ of \mathcal{X}^{\prime} by the above process is the spectrum of the blueprint $S^{-1} C$. Consequently, we can associate with every closed subscheme \mathcal{Y} of a scheme \mathcal{X} with an \mathbb{F}_{1}-model X a closed subscheme Y of X, which is an \mathbb{F}_{1}-model of \mathcal{Y}; namely, we apply the above process to all affine open subschemes of \mathcal{X} and glue them together, which is possible since additive closures commute with localizations.

In case of a projective variety, i.e. a closed subscheme \mathcal{Y} of a projective space $+\mathbb{P}_{\mathbb{Z}}^{n}$, we derive the following description of the associated \mathbb{F}_{1}-model Y in $\mathbb{P}_{\mathbb{F}_{1}}^{n}$ by homogeneous coordinate rings. Let C be the homogeneous coordinate ring of \mathcal{Y}, which is a quotient of $\mathbb{Z}\left[S_{0}, \ldots, S_{n}\right]^{+}$by a homogeneous ideal I. Let \mathcal{R} be the pre-addition on $\mathbb{F}_{1}\left[S_{0}, \ldots, S_{n}\right]$ that consists of all relations $\sum a_{i} \equiv \sum b_{j}$ such that $\sum a_{i}=\sum b_{j}$ in C. Then $B=\mathbb{F}_{1}\left[S_{0}, \ldots, S_{n}\right] / / \mathcal{R}$ inherits a grading from $\mathbb{F}_{1}\left[S_{0}, \ldots, S_{n}\right]$ by defining B_{i} as the image of $\mathbb{F}_{1}\left[S_{0}, \ldots, S_{n}\right]_{i}$ in B. Note that $B \subset C$ and that the sets B_{i} equal the intersections $B_{i}=C_{i} \cap B$ for $i \geqslant 0$ where C_{i} is the homogeneous part of degree i of C. Then the \mathbb{F}_{1}-model Y of \mathcal{Y} equals $\operatorname{Proj} B$.

5. \mathbb{F}_{1}-models for Grassmannians

One of the simplest examples of projective varieties that is not toric is the Grassmannian $\operatorname{Gr}(2,4)$. The problem of finding \mathbb{F}_{1}-models for Grassmannians was originally posed by Soulé in [12], and solved by the authors by obtaining a torification from the Schubert cell decomposition (cf. [8,7]). In this note, we present \mathbb{F}_{1}-models for Grassmannians as projective varieties defined through (homogeneous) blueprints. The proposed construction fits within a more general framework for obtaining blueprints and totally positive blueprints from cluster data (cf. [6]).

Classically, the coordinate ring for $\operatorname{Gr}(k, n)$ is obtained by quotienting out the homogeneous coordinate ring of the projective space $\mathbb{P}^{\binom{n}{k}-1}$ by the homogeneous ideal generated by the Plücker relations. A similar construction can be carried out using the framework of (graded) blueprints. We make that construction explicit for $\operatorname{Gr}(2,4)$.

Define the blueprint $\mathcal{O}_{\mathbb{F}_{1}}(\operatorname{Gr}(2,4))=\mathbb{F}_{1}\left[x_{12}, x_{13}, x_{14}, x_{23}, x_{24}, x_{34}\right] / / \mathcal{R}$ where the congruence \mathcal{R} is generated by the Plücker relation $x_{12} x_{34}+x_{14} x_{23} \equiv x_{13} x_{24}$ (the signs have been picked to ensure that the totally positive part of the Grassmannian is preserved, cf. [6]). Since \mathcal{R} is generated by a homogeneous relation, $\mathcal{O}_{\mathbb{F}_{1}}(\operatorname{Gr}(2,4))$ inherits a grading from the canonical morphism

$$
\pi: \mathbb{F}_{1}\left[x_{12}, x_{13}, x_{14}, x_{23}, x_{24}, x_{34}\right] \longrightarrow \mathbb{F}_{1}\left[x_{12}, x_{13}, x_{14}, x_{23}, x_{24}, x_{34}\right] / / \mathcal{R}
$$

Let $\operatorname{Gr}(2,4)_{\mathbb{F}_{1}}:=\operatorname{Proj}\left(\mathcal{O}_{\mathbb{F}_{1}}(\operatorname{Gr}(2,4))\right)$. The base extension $\operatorname{Gr}(2,4)_{\mathbb{Z}}^{+}$is the usual Grassmannian, and π defines a closed embedding of $\operatorname{Gr}(2,4)_{\mathbb{F}_{1}}$ into $\mathbb{P}_{\mathbb{F}_{1}}^{5}$, which extends to the classical Plücker embedding $\operatorname{Gr}(2,4)_{\mathbb{Z}}^{+} \hookrightarrow+\mathbb{P}_{\mathbb{Z}}^{5}$.

Homogeneous prime ideals in $\mathcal{O}_{\mathbb{F}_{1}}(\operatorname{Gr}(2,4))$ are described by their generators as the proper subsets $I \subsetneq\left\{x_{12}, x_{13}, x_{14}, x_{23}\right.$, $\left.x_{24}, x_{25}\right\}$ such that I is either contained in one of the sets $\left\{x_{12}, x_{34}\right\},\left\{x_{14}, x_{23}\right\},\left\{x_{13}, x_{24}\right\}$, or otherwise I has a non-empty intersection with all three of them. In other words, I cannot contain elements in two of the above sets without also containing an element of the third one. $\operatorname{Gr}(2,4)_{\mathbb{F}_{1}}$ is depicted in Fig. 1. It consists of $6+12+11+6+1=36$ prime ideals of ranks
$0,1,2,3$ and 4 , respectively (cf. [10, Def. 2.3] for the definition of rank), thus resulting in a model essentially different to the one presented in [8], which had 35 points corresponding to the coefficients of $N_{\operatorname{Gr}(2,4)}(q)=6+12(q-1)+11(q-1)^{2}+$ $5(q-1)^{3}+1(q-1)^{4}$. In spite of arising from different constructions, both \mathbb{F}_{1}-models for $\operatorname{Gr}(2,4)$ have $6=\binom{4}{2}$ closed points, supporting the naive combinatorial interpretation of $\operatorname{Gr}(2,4) \mathbb{F}_{1}$. These six points correspond to the \mathbb{F}_{1}-rational Tits points of $\operatorname{Gr}(2,4)_{\mathbb{F}_{1}}$, which reflect the naive notion of \mathbb{F}_{1}-rational points of an \mathbb{F}_{1}-scheme (cf. [10, Section 2.2]).

As in the classical setting, the Grassmannian $\operatorname{Gr}(2,4)_{\mathbb{F}_{1}}$ does admit a covering by six \mathbb{F}_{1}-models of affine 4 -space, which correspond to the open subsets of $\operatorname{Gr}(2,4)_{\mathbb{F}_{1}}$ where one of the generators is non-zero. However, these \mathbb{F}_{1}-models of affine 4 -space are not the standard model $\mathbb{A}_{\mathbb{F}_{1}}^{4}=\operatorname{Spec}\left(\mathbb{F}_{1}[a, b, c, d]\right)$, but the " 2×2-matrices" $M_{2, \mathbb{F}_{1}}=\operatorname{Spec}\left(\mathbb{F}_{1}[a, b, c, d, D] / /\right.$ $\langle a d \equiv b c+D\rangle$) in case that one of x_{12}, x_{34}, x_{14} or x_{23} is non-zero, and the "twisted 2×2-matrices" $M_{2, \mathbb{F}_{1}}^{\tau}=$ $\operatorname{Spec}\left(\mathbb{F}_{1}[a, b, c, d, D] / /\langle a d+b c \equiv D\rangle\right)$ in case that one of x_{13} or x_{24} is non-zero.

References

[1] C. Chu, O. Lorscheid, R. Santhanam, Sheaves and K-theory for \mathbb{F}_{1}-schemes, Adv. Math. 229 (4) (2012) 2239-2286.
[2] A. Connes, C. Consani, Characteristic 1, entropy and the absolute point, preprint, arXiv:0911.3537v1, 2009.
[3] A. Deitmar, Schemes over \mathbb{F}_{1}, in: Number Fields and Function Fields-Two Parallel Worlds, in: Progr. Math., vol. 239, Birkhäuser Boston, Boston, MA, 2005, pp. 87-100.
[4] A. Deitmar, \mathbb{F}_{1}-schemes and toric varieties, Beiträge Algebra Geom. 49 (2) (2008) 517-525.
[5] K. Kato, Toric singularities, Amer. J. Math. 116 (5) (1994) 1073-1099.
[6] J. López Peña, \mathbb{F}_{1}-models for cluster algebras and total positivity, in preparation.
[7] J. López Peña, O. Lorscheid, Mapping \mathbb{F}_{1}-land an overview of geometries over the field with one element, in: Noncommutative Geometry, Arithmetic and Related Topics, Johns Hopkins University Press, 2011, pp. 241-265.
[8] J. López Peña, O. Lorscheid, Torified varieties and their geometries over \mathbb{F}_{1}, Math. Z. 267 (3-4) (2011) 605-643.
[9] O. Lorscheid, The geometry of blueprints. Part I: Algebraic background and scheme theory, Adv. Math. 229 (3) (2012) 1804-1846.
[10] O. Lorscheid, The geometry of blueprints. Part II: Tits-Weyl models of algebraic groups, preprint, arXiv:1201.1324, 2012.
[11] G. Mikhalkin, Tropical geometry, unpublished notes, 2010.
[12] C. Soulé, Les variétés sur le corps à un élément, Mosc. Math. J. 4 (1) (2004) 217-244, 312.
[13] K. Thas, Notes on \mathbb{F}_{1}, I. Combinatorics of \mathcal{D}_{0}-schemes and \mathbb{F}_{1}-geometry, in preparation.

[^0]: E-mail addresses: jlp@math.ucl.ac.uk (J. López Peña), lorscheid@math.uni-wuppertal.de (O. Lorscheid).
 1 J. López Peña's research was supported by MCIM grant MTM2010-20940-C02-01, research group FQM-266 (Junta de Andalucía) and Max-Planck Institute for Mathematics in Bonn.

