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In this Note, we show a global weak existence result for a two dimensional Compressible
Primitive Equations for atmosphere dynamics modeling.
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r é s u m é

Dans cette Note, on montre un résultat d’existence de solutions faibles globale en
temps pour un modèle d’Équations Primitives Compressibles en dimension deux pour la
dynamique de l’atmosphère.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The Primitive Equations (PEs) of the atmosphere modeling are fundamental equations of geophysical fluid mechanics
(see, e.g., Pedlowski [6]). In the hierarchy of models for geophysical flow, the PEs are situated between the so-called non-
hydrostatic models and shallow water models. They are generally derived from the full set of geophysical fluid equations.
Owing to the difference of the depth and length scale, the derivation consists in replacing the momentum conservation
equation for the vertical velocity by the hydrostatic equation, in the same spirit of the derivation of the shallow water
equations (see, for instance, Gerbeau and Perthame [3] or Marche [5]). We refer to the works by Lions, Temam and Wang
[4] for the mathematical formulation and existence results for these equations.

In this Note, we investigate a simple version of the Compressible Primitive Equations (CPEs) for atmosphere dynamics
where we do not deal with complex phenomena as solar heating effects or the amount of water in the air (as done by Lions,
Temam and Wang [4] or Temam and Ziane [7]). This model is already introduced by Gatapov and Kazhikhov [2], and they
obtain a global existence theorem for weak solutions for a model, called model problem, close to the one presented in this
Note. As a straightforward consequence of the existence result [2], we prove the global solvability of the initial–boundary
value problem for the simplified CPEs.
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2. A global existence result for the simplified CPEs

We start with the simplified version of CPEs which, in Cartesian coordinates, reads:⎧⎪⎨
⎪⎩

∂tρ + ∂x(ρu) + ∂y(ρv) = 0,

∂t(ρu) + ∂x
(
ρu2) + ∂y(ρuv) + ∂x p = ∂x(ν1∂xu) + ∂y(ν2∂yu),

∂y p = −ρg

(1)

where x, y stand for the horizontal and the vertical space variables. ρ is the density, u = (u, v) is the velocity of the
fluid with u (resp. v) the horizontal (resp. vertical) component, p is the pressure given by the equation of state p(ρ) =
c2ρ for some given constant c.

The constant c is usually c2 = RT where R is the specific gas constant for the air and T is the temperature, as-
sumed constant. The turbulence viscosities are (ν1, ν2) for the horizontal and vertical direction and is written: ν1(t, x, y) =
ν0e−g/c2 y for some given positive constant ν0 and ν2 any given function. We assume that the motion of the medium occurs
in a rectangular domain Ω = {(x, y); 0 < x < l, 0 < y < h} and we prescribe the following boundary conditions as:

u|x=0 = u|x=l = 0, v |y=0 = v |y=h = 0, ∂yu|y=0 = ∂yu|y=h = 0 (2)

and the initial conditions as:

u|t=0 = u0(x, y), ρ|t=0 = ξ0(x)e−g/c2 y

where ξ0 is assumed to be a bounded strictly positive function: 0 < m � ξ0 � M < ∞.

Definition 2.1. A weak solution to (1)–(2) is a collection (ρ, u, v) of functions such that ρ � 0 and

ρ ∈ L∞(
0, T ; W 1,2(Ω)

)
, ∂tρ ∈ L2(0, T ; L2(Ω)

)
,

u ∈ L2(0, T ; W 2,2(Ω)
) ∩ W 1,2(0, T ; L2(Ω)

)
, v ∈ L2(0, T ; L2(Ω)

)
which satisfy (1) in the distribution sense; in particular, the integral identity holds for all φ|t=T = 0 with compact support:

T∫
0

∫
Ω

(
ρu∂tφ + ρu2∂xφ + ρuv∂zφ + ρ∂xφ + ρvφ

)
dx dy dt

= −
T∫

0

∫
Ω

(ν1∂xu∂xφ + ν2∂yu∂yφ)dx dy dt +
∫
Ω

u0ρ0φ|t=0 dx dy.

Then, we state the main result:

Theorem 1. Assume that the initial data (ξ0, u0) satisfies: (ξ0, u0) ∈ W 1,2(Ω), u0|x=0 = u0|x=l = 0. Then (1)–(2) has a global weak
solution in time and ρ(t, x, y) is a bounded strictly positive function.

Proof. For simplicity, we assume l = h = 1, g = c2, ν1(t, x, y) = e−y and ν2(t, x, y) = e y . Then, using the hydrostatic approx-
imation ∂yρ = −ρ , the density can be written as follows: ρ(t, x, y) = ξ(t, x)e−y where ξ is an unknown function. Such a
structure suggests to use the following change of variables:

z = 1 − e−y . (3)

Next, multiplying Eqs. (1) by e y and using the change of variables (3) provides the model, called model problem by the
authors [2]:

⎧⎨
⎩

∂tξ + ∂x(ξu) + ∂z(ξ w) = 0,

∂t(ξu) + ∂x
(
ξu2

) + ∂z(ξuw) + ∂xξ = ∂x(∂xu) + ∂z(∂zu),

∂zξ = 0

(4)

where w is the vertical velocity in the new coordinates: w(t, x, z) = e−y v(t, x, y). This model coincides with the model
studied by Gatapov and Kazhikhov [2], derived from Eqs. (1) by neglecting some terms, for which they provide the following
global existence result:
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Theorem 2. Assume that the initial data (ξ0, u0) satisfies (ξ0, u0) ∈ W 1,2(Ω), u0|x=0 = u0|x=1 = 0. Then (4) has a global weak
solution in time satisfying the boundary conditions

u|x=0 = u|x=1 = 0, w |y=0 = w |y=1 = 0, ∂zu|z=0 = ∂zu|z=1 = 0. (5)

Moreover, ξ(t, x) is a bounded strictly positive function.

In the previous theorem, a weak solution of (4)–(5) is a collection (ξ, u, w) of functions such that ξ � 0 and

ξ ∈ L∞(
0, T ; W 1,2(0,1)

)
, ∂tξ ∈ L2(0, T ; L2(0,1)

)
,

u ∈ L2(0, T ; W 2,2(Ω)
) ∩ W 1,2(0, T ; L2(Ω)

)
, w ∈ L2(0, T ; L2(Ω)

)
which satisfy (4) in the distribution sense; in particular, the integral identity holds for all φ|t=T = 0 with compact support:

T∫
0

∫
Ω

(
ξu∂tφ + ξu2∂xφ + ξuw∂zφ + ξ∂xφ

)
dx dz dt = −

T∫
0

∫
Ω

u�φ dx dz dt +
∫
Ω

u0ξ0φ|t=0 dx dz.

Now, assume that the initial data (ξ0, u0) have the properties:

(ξ0, u0) ∈ W 1,2(Ω), u0|x=0 = u0|x=1 = 0,

then ξ(t, x) is a bounded strictly positive function and there exists a triplet (ξ, u, w) such as:

ξ ∈ L∞(
0, T ; W 1,2(0,1)

)
, ∂tξ ∈ L2(0, T ; L2(0,1)

)
,

u ∈ L2(0, T ; W 2,2(Ω)
) ∩ W 1,2(0, T ; L2(Ω)

)
, w ∈ L2(0, T ; L2(Ω)

)
which satisfy (4) in the distribution sense. Moreover, by a simple change of variables z = 1 − e−y in the integrals, we get
the following properties:

‖ρ‖L2(Ω) = α‖ξ‖L2([0,1]), ‖∂xρ‖L2(Ω) = α‖∂xξ‖L2([0,1]), ‖∂yρ‖L2(Ω) = α‖ξ‖L2([0,1])

where α = ∫ 1−e−1

0 (1 − z)dz < +∞. We deduce then, ‖ρ‖W 1,2(Ω) = α‖ξ‖W 1,2([0,1]) which provides

ρ ∈ L∞(
0, T ; W 1,2(Ω)

)
and ∂tρ ∈ L2(0, T ; L2(Ω)

)
.

Again, by the change of variable in integrals, the fact that v ∈ L2(0, T ; L2(Ω)) is obtained from the inequality:

‖v‖2
L2(Ω)

=
1∫

0

1∫
0

∣∣v(t, x, y)
∣∣2

dy dx =
1∫

0

1−e−1∫
0

(
1

1 − z

)3∣∣w(t, x, z)
∣∣2

dz dx < e3‖w‖2
L2(Ω)

.

Finally, all estimates on u remaining true, Theorem 1 is proved. �
3. Perspectives

Mathematical developing of these type of equations provides several interesting and difficult issues. The existence of
weak solutions global in time is one of the difficult issues closely related to the compressible Navier–Stokes equations since
the main and difficult task is to show that the density can be controlled with sufficient estimates. Several aspects on the
well-posedness of these equations are still open and demand a great amount of work. Such a work is a challenge both
from mathematical motivation and numerical modeling since such a study will provide useful qualitative properties of the
solutions for numerical process, especially for anisotropic and density dependent viscosities.

We will address important issues about well-posedness for the above mentioned problem in dimension three for which
we have already established a stability result [1]. Moreover, within this framework, we expect to provide an answer, at
least in “thin-layer” domain, to the well-posedness of the compressible Navier–Stokes equations with the equation of state
p(ρ) = ρ .
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