
C. R. Acad. Sci. Paris, Ser. I 350 (2012) 389–392
Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Partial Differential Equations

A blowup result for the periodic NLS without gauge invariance

Un résultat d’explosion pour l’équation de Schrödinger non linéaire sans invariance de
gauge dans le cas périodique

Tadahiro Oh

Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, NJ 08544-1000, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 February 2012
Accepted after revision 10 April 2012
Available online 21 April 2012

Presented by the Editorial Board

In this Note, we prove a finite-time blowup result for the periodic nonlinear Schrödinger
equation on T

d with nonlinearity |u|p for p > 1. In particular, our blowup result holds
above the Strauss exponent. This is in contrast with the non-periodic setting, where global
existence for small data is known above the Strauss exponent.
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r é s u m é

Dans cette Note, nous démontrons un résultat d’explosion en temps fini pour l’équation
de Schrödinger non linéaire sur le tore T

d avec une non linéarité du type |u|p , p > 1.
En particulier, notre résultat d’explosion est vrai pour des puissances p plus grandes que
l’exposant de Strauss. Cette situation est contraire au cas non périodique où l’on connaît
que pour p supérieur à l’exposant de Strauss, le problème de Cauchy est globalement bien
posé.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this Note, we prove a finite-time blowup result for the following periodic NLS:{
i∂t u + �u = λ|u|p,

u|t=0 = u0 ∈ Hs
(
T

d
)
,

(x, t) ∈ T
d ×R, p > 1. (1)

A similar result was proven by Ikeda and Wakasugi [6] on R
d below the short range exponent: 1 < p � 1 + 2

d . Recall [4]
that, on R

d , there is global existence for small data if p > pS , where pS is the Strauss exponent given by pS = (d + 2 +√
d2 + 12d + 4)/(2d) > 1 + 2

d . However, dispersion is much weaker on T
d and such small data global existence is not known

on T
d .1 Indeed, our blowup result on T

d holds even above the Strauss exponent (see Theorems 1.2 and 1.4). We conclude
that, on T

d , there is no small data global well-posedness for (1) even above the Strauss exponent. The main purpose of this
Note is to present this sharp contrast of the behaviors of solutions on T

d and R
d .

E-mail address: hirooh@math.princeton.edu.
1 Recall that the proof of small data global existence on R

d above the Strauss exponent is based on the dispersion estimate, which does not hold on T
d .
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First, let us define the notion of weak solutions as in [6]:

Definition 1.1. We say that u is a local weak solution to (1) on [0, T ) if u ∈ L p(Td × [0, T )) and

T∫
0

∫
Td

u(−i∂tφ + �φ)dx dt = i

∫
Td

u0(x)φ(x,0)dx + λ

T∫
0

∫
Td

|u|pφ dx dt, (2)

for any φ ∈ C∞(Td × [0, T )) with φ(x, T ) ≡ 0. If T > 0 can be made arbitrarily large, then we say that u is a global weak
solution.

Write μ := ∫
Td u0(x)dx as μ = μ1 + iμ2, where μ1 = Re

∫
Td u0(x)dx and μ2 = Im

∫
Td u0(x)dx.

Theorem 1.2. Let 1 < p < ∞ and λ �= 0. Suppose that λ = λ1 + iλ2 and μ = μ1 + iμ2 satisfy

λ1μ2 < 0 or λ2μ1 > 0. (3)

If u is a global-in-time weak solution to NLS (1), then u(x, t) = 0 a.e. on T
d × [0,∞).

The proof of Theorem 1.2 follows that in [6]. On T
d , the result holds for a much wider range of p due to the boundedness

of the spatial domain. By uniqueness of the Cauchy problem, Theorem 1.2 states that there is a finite-time blowup. See
Theorem 1.4. Note that only the sign condition (3) is imposed in Theorem 1.2. In particular, this blowup result holds for
small data as well.

In the well-posedness theory of the Cauchy problem (1), we usually say that u is a solution to (1) if it satisfies the
following Duhamel formulation:

u(t) = S(t)u0 − iλ

t∫
0

S
(
t − t′)|u|p(

t′)dt′, (4)

where S(t) = eit� . For s > d
2 and p ∈ 2N, one can prove local well-posedness of (4) in Hs by Sobolev embedding. In [1],

Bourgain introduced the X s,b-space given by the norm: ‖u‖X s,b(Td×R) = ‖〈n〉s〈τ + |n|2〉bû(n, τ )‖�2
n L2

τ (Zd×R) and proved local

well-posedness of NLS with nonlinearity |u|p−1u in L2 for p = 3 and d = 1, and in Hs , s > 0, for odd integers p � 1 + 4
d

with d = 1,2. His argument directly applies to (1) in certain cases. In particular, (1) is locally well-posed in L2 for p � 3 and
d = 1, and in Hs , s > 0, for even integers p � 1+ 4

d with d = 1,2. There are also well-posedness results in higher dimensions
or for other values of p. See [1–3,5]. One may prove an analogous statement to Proposition 1.3 below in these settings, but
for simplicity of the presentation, we will not discuss them in this Note.

A natural question is; do these solutions to (4) satisfy the weak formulation (2)? The following proposition provides a
positive answer:

Proposition 1.3. Assume that one of the followings holds: (i) s > d
2 and p ∈ 2N, (ii) s = 0, p � 3, d = 1, or (iii) s > 0, p � 1 + 4

d ,
p ∈ 2N with d = 1,2. Then, if u ∈ C([0, T ) : Hs) satisfies the Duhamel formulation (4) on [0, T ) for some T > 0, then it is a weak
solution to (1) in the sense of Definition 1.1.

Recall the following blowup alternative: if u is a solution in C([0, T ) : Hs), then either (a) there exists ε > 0 such that
u can be extended to [0, T + ε) or (b) limt↗T ‖u(t)‖Hs = ∞. In the second case, such T is called the maximal time of
existence.

The well-posedness result under the condition (i), (ii), or (iii) in Proposition 1.3 sustains this blowup alternative, since
the Cauchy problem (1) is subcritical under (i), (ii), and (iii). Hence, Theorem 1.2 and Proposition 1.3 yield the following
conclusion:

Theorem 1.4. Let 1 < p < ∞. Assume the hypotheses in Theorem 1.2 and Proposition 1.3. Then, the maximal time T ∗ of existence is
finite and we have lim inft↗T ∗ ‖u(t)‖Hs = ∞.

Remark 1.5. By integrating (1) and taking the real and imaginary parts, we obtain

∂tμ1(t) = λ2

∫
Td

∣∣u(t)
∣∣p

dx, ∂tμ2(t) = −λ1

∫
Td

∣∣u(t)
∣∣p

dx,

where μ1(t) = Re
∫
Td u(t)dx and μ2(t) = Im

∫
Td u(t)dx. Hence, by Theorem 1.2, we deduce that any global solution must

satisfy the following space–time bound:
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∞∫
0

∫
Td

∣∣u(t)
∣∣p

dx dt � min

(
μ2(0)

λ1
,−μ1(0)

λ2

)
< ∞.

From this, we conclude that any global solution must go to 0 as t → ∞ in some averaged sense.

2. Proofs of Theorem 1.2 and Proposition 1.3

Proof of Theorem 1.2. The proof is based on the test-function method by Zhang [7,8]. For simplicity of presentation, we
only prove Theorem 1.2 when λ1μ2 < 0. Without loss of generality, assume λ1 = Reλ > 0 and μ2 = Im

∫
T

u0(x)dx < 0. Let
η ∈ C∞([0,∞)) such that it is non-negative, supported on [0,1), η(t) ≡ 1 on [0, 1

2 ), and ∂tη � C . With ηR(t) = η(t/R2),
R > 0, let φR(x, t) = ηR(t), i.e. φR is independent of x ∈ T

d . Define IR by

IR := Re λ

R2∫
0

∫
Td

|u|pφ
p′
R dx dt,

where p′ is the Hölder conjugate of p. Then, from (2) with the Hölder inequality, we have

IR = Im
∫
Td

u0(x)dx + Re

R2∫
0

∫
Td

u
(−i∂t

(
φ

p′
R

) + �
(
φ

p′
R

))
dx dt

<
p′

R2

R2∫
R2
2

∫
Td

∣∣u(x, t)
∣∣φp′−1

R (x, t)

∣∣∣∣∂tη

(
t

R2

)∣∣∣∣ dx dt

� R− 2
p

( R2∫
R2
2

∫
Td

∣∣u(x, t)
∣∣p

φ
p′
R (x, t)dx dt

) 1
p

� R− 2
p I

1
p
R .

It is at the second to the last inequality where the boundedness of the spatial domain played a crucial role. Thus, for
1 < p < ∞, we have

IR � R− 2
p−1 � C, (5)

where C is independent of R > 1. Since φR(x, t) ≡ 1 on T
d × [0, R2

2 ), we have

R2
2∫

0

∫
Td

|u|p dx dt � C < ∞, independent of R > 1.

By Monotone Convergence Theorem, we conclude that u ∈ L p(Td × [0,∞)). From Fatou’s lemma with (5), we obtain that

‖u‖Lp(Td×[0,∞)) � limR→∞ I
1
p
R = limR→∞ R− 2

p(p−1) = 0. In particular, we conclude that u(x, t) = 0 a.e. on T
d × [0,∞). �

Proof of Proposition 1.3. First, assume (i); u0 ∈ Hs(T), s > d
2 and p ∈ 2N. Then, there exists a unique solution u ∈

C([0, T ); Hs), satisfying (4). By Sobolev embedding, we have u ∈ L p(Td × [0, T )). Write u(t) = S(t)u0 + N (u)(t), where
N (u) denotes the second term in the Duhamel formulation (4). First, we show that the linear part S(t)u0 satisfies

T∫
0

∫
Td

S(t)u0(−i∂tφ + �φ)dx dt = i

∫
Td

u0(x)φ(x,0)dx. (6)

Let u0,n be smooth functions converging to u0 in Hs . Then, S(t)u0,n , n ∈ N, solves the linear Schrödinger equation: i∂t u +
�u = 0 and is smooth on T

d × [0, T ). Integrating by parts, we have

T∫ ∫
d

S(t)u0,n(−i∂tφ + �φ)dx dt = i

∫
d

u0,n(x)φ(x,0)dx. (7)
0 T T
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By the Hölder inequality and the unitarity of S(t) on L2, we have∣∣∣∣∣
T∫

0

∫
Td

(
S(t)u0 − S(t)u0,n

)
(−i∂tφ + �φ)dx dt

∣∣∣∣∣ � ‖u0 − u0,n‖L2

(‖φ‖W 1,1
t L2

x
+ ‖φ‖L1

t H2
x

) −→ 0. (8)

Similarly, the right-hand side of (7) converges to the right-hand side of (6). Hence, (6) holds.
Next, we consider the nonlinear part N (u). Let un be smooth functions on T

d × [0, T ) converging to u in CT Hs :=
C([0, T ); Hs). Then, by the algebra property of Hs , s > d

2 , and the unitarity of S(t), we have∥∥N (u) −N (un)
∥∥

CT Hs � T
(‖u‖p−1

CT Hs + ‖un‖p−1
CT Hs

)‖u − un‖CT Hs −→ 0. (9)

Let vn =N (un). Then, vn solves the inhomogeneous linear Schrödinger equation:

i∂t vn + �vn = λ|un|p .

Note that vn(x,0) ≡ 0. Then, proceeding as in (8) with (9) and integrating by parts, we have

T∫
0

∫
Td

N (u)(−i∂tφ + �φ)dx dt = lim
n→∞

T∫
0

∫
Td

vn(−i∂tφ + �φ)dx dt

= lim
n→∞

T∫
0

∫
Td

(i∂t vn + �vn)φ dx dt

= lim
n→∞λ

T∫
0

∫
Td

|un|pφ dx dt = λ

T∫
0

∫
Td

|u|pφ dx dt. (10)

The identity (2) follows from (6) and (10).
Next, we briefly discuss the cases (ii) and (iii). The argument for the linear part remains the same. Hence, it suffices

to establish the convergence of the nonlinear part N (un) to N (u) as in (9). This follows from the following multilinear
estimate due to Bourgain [1,3]:∥∥N (u)

∥∥
CT Hs �

∥∥N (u)
∥∥

Xs,b
T

� T θ‖u‖p

Xs,b
T

, for some b >
1

2

under the condition (ii) or (iii) in Proposition 1.3, where X s,b
T is a local-in-time version of X s,b on [0, T ). Then, we take

smooth functions un on T
d × [0, T ) converging to u in X s,b ⊂ CT Hs . The rest follows as before. This completes the proof of

Proposition 1.3. �
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