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We determine the closure of the set of pseudodifferential operators of Calderón Vaillan-
court type in the space of bounded linear operators in L2(Rn), and also the closure of
the similar classes of C. Rondeaux in the Schatten class. We give representation-theoretic
characterizations of these classes.
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r é s u m é

On détermine l’adhérence de l’ensemble des opérateurs pseudodifférentiels appartenant
à la classe de Calderón-Vaillancourt dans l’espace des opérateurs bornés dans L2(Rn), et
aussi des classes analogues de C. Rondeaux dans les classes de Schatten correspondantes.
On donne une caractérisation de ces classes en termes de représentations de groupes.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Statement of the results

For each p in [1,∞], let us denote by W ∞p(R2n) the set of functions F in C∞(R2n) which are in L p(R2n) such as all
their derivatives. For each function F in W ∞∞(R2n), we denote by Op(F ) the operator formally defined, for each f ∈ S(Rn),
by:

(
Op(F ) f

)
(u) = (2π)−n

∫

R2n

ei(x−y)·ξ F

(
x + y

2
, ξ

)
f (y)dy dξ (1)

Calderón and Vaillancourt have shown in [3] that such an operator is well defined, and is bounded in H = L2(Rn). We
denote by Ψ∞(H) the space of operators A in L(H) which are associated in this way to a symbol F in W ∞∞(R2n).

We want to find the closure of Ψ∞(H) in L(H), and to give a representation-theoretic formulation of the Beals charac-
terization [2] of Ψ∞(H).

We can ask the same question, replacing the set of bounded operators in H by one of the Schatten classes. For each p in
[1,∞[, we denote by Lp(H) the Schatten class of operators A in L(H) such that |A|p is trace class, where |A| = (A� A)1/2.
This space (see, for instance, [5]), is endowed with the norm:

‖A‖p = (
Tr

(|A|p))1/p
(2)
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It is proved in C. Rondeaux [4] that, for each F in W ∞p(R2n), the formal equality (1) still defines a bounded operator
Op(F ) in H = L2(Rn), and that this operator is in the Schatten class Lp(H). Let us denote by Ψp(H) the set of operators
in Lp(H) that are defined in this way.

We denote by Hn the Heisenberg group with dimension 2n + 1, i.e. Rn × R
n × R endowed with the composition law

defined, for all g = (X, Y , t) and g′ = (X ′, Y ′, t′) in Hn , by:

g ◦ g′ =
(

X + X ′, Y + Y ′, t + t′ + 1

2

(
X · Y ′ − Y · X ′)) (3)

We shall denote by π the representation of Hn in H = L2(Rn) defined, for each g = (X, Y , t) in Hn , and for each f in H,
by:

(
π(g) f

)
(u) = f (X + u)ei(u·Y +t+ 1

2 X ·Y ) (4)

Let us agree that L∞(H) = L(H). For each p in [1,+∞], we define also a representation Πp of Hn in the Banach space
Lp(H) by setting:

Πp(g)(A) = π(g)Aπ(g)−1, g ∈ Hn, A ∈ Lp(H) (5)

This representation is norm-preserving. If p < ∞, the representation Πp is continuous. In fact, if A is of finite rank, we see
easily that the map g → Πp(g)(A) is continuous from Hn to Lp(H). Then, we remark that the set of operators with finite
rank is dense in Lp(H) if p < +∞ (see [5]).

Theorem 1.1. a) For each p in [1,+∞], the set Ψp(H) is the set of C∞ vectors of the representation Πp , i.e. the set of operators A in
Lp(H) such that the map

g → Πp(g)(A) (6)

is C∞ from Hn to Lp(H).
b) The closure of Ψ∞(H) in L(H) is the set of continuous vectors of the representation Π∞ , i.e. the set of operators A in L(H)

such that the map (6) is continuous from Hn to L(H). If p < +∞, the set Ψp(H) is dense in the Schatten class Lp(H).

For p = 1, the point b) has been proved in [1].

2. Proof of point a) of Theorem 1.1

Let P j be the operator of derivation with respect to the variable u j , and Q j be the operator of multiplication by u j
(1 � j � n). For each operator A in L(H), and for each multi-indices α = (α1, . . . ,αn) and β = (β1, . . . , βn), the iterated
commutator:

(ad P )α(ad Q )β A = (ad P1)
α1 · · · (ad Pn)

αn (ad Q 1)
β1 · · · (ad Q n)

βn A (7)

is well defined as an operator from S(Rn) to S ′(Rn). Let us recall the classical following result:

Theorem 2.1. An operator A in Lp(H) (1 � p � +∞) is in Ψp(H) if, and only if, for each multi-indices α and β , the operator
(ad P )α(ad Q )β A (a priori defined as an operator from S(Rn) to S ′(Rn)) is in Lp(H).

If p = +∞, Theorem 2.1 is a very classical result, the Beals characterization of pseudo-differential operators [2]. If p <

+∞, it has been proved in C. Rondeaux [4].
Let Π be the representation of Hn in L(S(Rn),S ′(Rn)) defined as in (5), i.e. for each g ∈ Hn , for each A in

L(S(Rn),S ′(Rn)), for each ϕ and ψ in S(Rn):
〈
Π(g)(A)ϕ,ψ

〉 = 〈
Aπ(g)−1ϕ,π(g)−1ψ

〉
(8)

By definition (3), we see that, if A is in L(H), if ϕ and ψ are in S(Rn), both sides of this equality are C∞ functions in
Hn , and that, for each g = (X, Y , t) in Hn , we have:

∂

∂ X j

〈
Π(X, Y , t)(A)ϕ,ψ

〉 = 〈
Π(X, Y , t)

([P j, A])ϕ,ψ
〉

(9)

∂

∂Y j

〈
Π(X, Y , t)(A)ϕ,ψ

〉 = i
〈
Π(X, Y , t)

([Q j, A])ϕ,ψ
〉

(10)

∂

∂t

〈
Π(X, Y , t)(A)ϕ,ψ

〉 = 0 (11)

We may iterate, and we shall use Taylor expansions of the left side of (8).
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If A is a C∞ vector of Πp , we may replace Π by Πp in the left side of (9), and equality (9), taken at the origin, shows
that [P j, A] is in Lp(H), and that the following equality:

∂Πp(X, Y , t)(A)

∂ X j
= Πp(X, Y , t)

([P j, A]) (12)

is valid at the origin. Since Πp is a norm preserving representation, it follows that the same equality is valid for each g
in Hn . Since A is a C∞ vector of the representation Πp , it follows that [P j, A] is also a C∞ vector of Πp . It is the same for
[Q j, A], and we have:

∂Πp(X, Y , t)(A)

∂Y j
= iΠp(X, Y , t)

([Q j, A]), ∂Πp(X, Y , t)(A)

∂t
= 0 (13)

Therefore, we can iterate the same argument, replacing A by these commutators, and prove by induction that all the
commutators (7) are C∞ vectors of the representation Πp , and in particular that they are in Lp(H). By Theorem 2.1, it
follows that A is in Ψp(H).

Before proving the converse, we have to make clear a question of continuity for p = +∞. Let A be in L(H), such as the
commutators [P j, A] and [Q j, A]. We write a Taylor expansion of the left-hand side of (8). For each g = (X, Y , t) in Hn , for
each ϕ and ψ in S(Rn), we may write:

〈(
Π(X, Y , t)(A) − A

)
ϕ,ψ

〉 =
n∑

j=1

[
X j A j(X, Y , t, A,ϕ,ψ) + Y j A j(X, Y , t, A,ϕ,ψ)

]

where:

A j(X, Y , t, A,ϕ,ψ) =
1∫

0

〈
Π(θ X, θY , θt)

([P j, A])ϕ,ψ
〉
dθ

and where B j(g, A,ϕ,ψ) is defined in a similar way. We may replace Π by Π∞ above. Since Π∞ is a norm preserving
representation, it follows that |A j(g, A,ϕ,ψ)| � ‖[P j, A]‖L(H)‖ϕ‖H‖ψ‖H and similarly for B j(g, A,ϕ,ψ). Then it follows
that the map g → Π∞(g)(A) is continuous from Hn to L(H) at the origin, and, since Πp is norm preserving, this map is
continuous in all Hn .

If A is in Ψp(H), Theorem 2.1 and the remark above show that A and all the commutators (7) are continuous vectors of
the representation Πp . (The above remarks are needed only for p = +∞.) Hence, the following functions:

A jk(X, Y , t) =
1∫

0

Πp(θ X, θY , θt)
([

P j, [Pk, A]])dθ, B jk(X, Y , t) = i

1∫
0

Πp(θ X, θY , θt)
([

P j, [Q k, A]])dθ

C jk(X, Y , t) = −
1∫

0

Πp(θ X, θY , θt)
([

Q j, [Q k, A]]) dθ

are continuous and bounded in Hn , with values in Lp(H). The function L defined in Hn by

L(X, Y , t) = Πp(X, Y , t)(A) − A −
n∑

j=1

[
X jΠp

([P j, A]) + iY jΠp
([Q j, A])]

− 1

2

∑
1� j,k�n

[
X j Xk A jk(X, Y , t) + 2X j Yk B jk(X, Y , t) + Y j YkC jk(X, Y , t)

]

is also continuous in Hn , with values in Lp(H). For each ϕ and ψ in S(Rn), we may write a Taylor expansion of the
left-hand side of (8), which is C∞ , using (9), (10) and (11), and replacing Π by Πp . We get 〈L(X, Y , t)ϕ,ψ〉 = 0 for all ϕ
and ψ in S(Rn), and therefore L(X, Y , t) = 0. It follows that the map (6), from Hn to Lp(H), is differentiable at the origin,
and that its partial derivatives are given by (12) and (13) at the origin. Since Πp is a norm preserving representation, the
map g → Πp(g)(A) is differentiable in Hn , and its partial derivatives are still given by (12) and (13). By the above remark,
the map (6) is C1. By iterating, we see that this map is C∞ from Hn to Lp(H). Point a) of Theorem 1.1 is proved.
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3. Proof of point b) of Theorem 1.1

Let A be an operator in Lp(H) (1 � p � +∞) which is the limit, in Lp(H), of a sequence (A j) of operators in Ψp(H).
By the point a) of Theorem 1.1, the functions g → Πp(g)(A j) are C∞ from Hn to Lp(H). We have, for each g in Hn:

∥∥Πp(g)(A j − A)
∥∥
Lp(H)

� ‖A j − A‖Lp(H) (14)

Therefore, the function (6), being a uniform limit, in Hn , of a sequence of C∞ functions with values in Lp(H), is itself
continuous from Hn to Lp(H).

Conversely, let A be a continuous vector of the representation Πp . In order to give a suitable approximation of A, we
define, for each λ > 0, the following operator:

T (p)
λ A = (πλ)−n

∫

R2n

e− |X|2+|Y |2
λ Πp(X, Y ,0)(A)dX dY

This operator was already used in [1] (Section 5). We remark that:

Πp(X, Y , t)
(
T (p)

λ A
) = (πλ)−n

∫

R2n

e− |X ′−X|2+|Y ′−Y |2
λ Πp

(
X ′, Y ′,0

)
(A)dX ′ dY ′

Then, it is clear that the function g → Πp(g)(T (p)
λ A) is C∞ from Hn to Lp(H). By point a) of Theorem 1.1, T (p)

λ A is an
element of Ψp(H). Since A is a continuous vector of Πp , we have:

lim
λ→0

∥∥T (p)
λ A − A

∥∥
Lp(H)

= 0

The proof is similar to that of the analogous elementary result for convolutions. It follows that the closure of Ψp(H) in
Lp(H) is the set of continuous vectors of Πp . If p < +∞, this set is all Lp(H).
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