

Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Mathematical Analysis

Closure of the set of pseudodifferential operators

Adhérence de l'ensemble des opérateurs pseudodifférentiels

Jean Nourrigat

Laboratoire de mathématiques, EA4535 and FR.CNRS.3399, université de Reims, U.F.R. sciences exactes et naturelles, moulin de la Housse, BP 1039, 51687 Reims cedex 2, France

A R T I C L E I N F O

Article history: Received 2 February 2012 Accepted after revision 10 April 2012 Available online 21 April 2012

Presented by Jean-Michel Bony

ABSTRACT

We determine the closure of the set of pseudodifferential operators of Calderón Vaillancourt type in the space of bounded linear operators in $L^2(\mathbb{R}^n)$, and also the closure of the similar classes of C. Rondeaux in the Schatten class. We give representation-theoretic characterizations of these classes.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

On détermine l'adhérence de l'ensemble des opérateurs pseudodifférentiels appartenant à la classe de Calderón-Vaillancourt dans l'espace des opérateurs bornés dans $L^2(\mathbb{R}^n)$, et aussi des classes analogues de C. Rondeaux dans les classes de Schatten correspondantes. On donne une caractérisation de ces classes en termes de représentations de groupes.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Statement of the results

For each p in $[1, \infty]$, let us denote by $W^{\infty p}(\mathbb{R}^{2n})$ the set of functions F in $C^{\infty}(\mathbb{R}^{2n})$ which are in $L^{p}(\mathbb{R}^{2n})$ such as all their derivatives. For each function F in $W^{\infty \infty}(\mathbb{R}^{2n})$, we denote by Op(F) the operator formally defined, for each $f \in S(\mathbb{R}^{n})$, by:

$$\left(Op(F)f\right)(u) = (2\pi)^{-n} \int_{\mathbb{R}^{2n}} e^{i(x-y)\cdot\xi} F\left(\frac{x+y}{2},\xi\right) f(y) \,\mathrm{d}y \,\mathrm{d}\xi \tag{1}$$

Calderón and Vaillancourt have shown in [3] that such an operator is well defined, and is bounded in $\mathcal{H} = L^2(\mathbb{R}^n)$. We denote by $\Psi_{\infty}(\mathcal{H})$ the space of operators A in $\mathcal{L}(\mathcal{H})$ which are associated in this way to a symbol F in $W^{\infty\infty}(\mathbb{R}^{2n})$.

We want to find the closure of $\Psi_{\infty}(\mathcal{H})$ in $\mathcal{L}(\mathcal{H})$, and to give a representation-theoretic formulation of the Beals characterization [2] of $\Psi_{\infty}(\mathcal{H})$.

We can ask the same question, replacing the set of bounded operators in \mathcal{H} by one of the Schatten classes. For each p in $[1, \infty[$, we denote by $\mathcal{L}^p(\mathcal{H})$ the Schatten class of operators A in $\mathcal{L}(\mathcal{H})$ such that $|A|^p$ is trace class, where $|A| = (A^*A)^{1/2}$. This space (see, for instance, [5]), is endowed with the norm:

$$\|A\|_p = \left(\mathrm{Tr}\big(|A|^p\big)\right)^{1/p} \tag{2}$$

E-mail address: jean.nourrigat@univ-reims.fr.

¹⁶³¹⁻⁰⁷³X/\$ – see front matter O 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.crma.2012.04.006

It is proved in C. Rondeaux [4] that, for each F in $W^{\infty p}(\mathbb{R}^{2n})$, the formal equality (1) still defines a bounded operator Op(F) in $\mathcal{H} = L^2(\mathbb{R}^n)$, and that this operator is in the Schatten class $\mathcal{L}^p(\mathcal{H})$. Let us denote by $\Psi_p(\mathcal{H})$ the set of operators in $\mathcal{L}^p(\mathcal{H})$ that are defined in this way.

We denote by H_n the Heisenberg group with dimension 2n + 1, i.e. $\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}$ endowed with the composition law defined, for all g = (X, Y, t) and g' = (X', Y', t') in H_n , by:

$$g \circ g' = \left(X + X', Y + Y', t + t' + \frac{1}{2} (X \cdot Y' - Y \cdot X') \right)$$
(3)

We shall denote by π the representation of H_n in $\mathcal{H} = L^2(\mathbb{R}^n)$ defined, for each g = (X, Y, t) in H_n , and for each f in \mathcal{H} , by:

$$(\pi(g)f)(u) = f(X+u)e^{i(u\cdot Y+t+\frac{1}{2}X\cdot Y)}$$
(4)

Let us agree that $\mathcal{L}^{\infty}(\mathcal{H}) = \mathcal{L}(\mathcal{H})$. For each p in $[1, +\infty]$, we define also a representation Π_p of H_n in the Banach space $\mathcal{L}^p(\mathcal{H})$ by setting:

$$\Pi_p(g)(A) = \pi(g)A\pi(g)^{-1}, \quad g \in H_n, \ A \in \mathcal{L}^p(\mathcal{H})$$
(5)

This representation is norm-preserving. If $p < \infty$, the representation Π_p is continuous. In fact, if A is of finite rank, we see easily that the map $g \to \Pi_p(g)(A)$ is continuous from H_n to $\mathcal{L}^p(\mathcal{H})$. Then, we remark that the set of operators with finite rank is dense in $\mathcal{L}^p(\mathcal{H})$ if $p < +\infty$ (see [5]).

Theorem 1.1. a) For each p in $[1, +\infty]$, the set $\Psi_p(\mathcal{H})$ is the set of C^{∞} vectors of the representation Π_p , i.e. the set of operators A in $\mathcal{L}^p(\mathcal{H})$ such that the map

$$g \to \Pi_p(g)(A) \tag{6}$$

is C^{∞} from H_n to $\mathcal{L}^p(\mathcal{H})$.

b) The closure of $\Psi_{\infty}(\mathcal{H})$ in $\mathcal{L}(\mathcal{H})$ is the set of continuous vectors of the representation Π_{∞} , i.e. the set of operators A in $\mathcal{L}(\mathcal{H})$ such that the map (6) is continuous from H_n to $\mathcal{L}(\mathcal{H})$. If $p < +\infty$, the set $\Psi_p(\mathcal{H})$ is dense in the Schatten class $\mathcal{L}^p(\mathcal{H})$.

For p = 1, the point b) has been proved in [1].

2. Proof of point a) of Theorem 1.1

Let P_j be the operator of derivation with respect to the variable u_j , and Q_j be the operator of multiplication by u_j $(1 \le j \le n)$. For each operator A in $\mathcal{L}(\mathcal{H})$, and for each multi-indices $\alpha = (\alpha_1, \ldots, \alpha_n)$ and $\beta = (\beta_1, \ldots, \beta_n)$, the iterated commutator:

$$(ad P)^{\alpha}(ad Q)^{\beta}A = (ad P_1)^{\alpha_1} \cdots (ad P_n)^{\alpha_n}(ad Q_1)^{\beta_1} \cdots (ad Q_n)^{\beta_n}A$$
(7)

is well defined as an operator from $\mathcal{S}(\mathbb{R}^n)$ to $\mathcal{S}'(\mathbb{R}^n)$. Let us recall the classical following result:

Theorem 2.1. An operator A in $\mathcal{L}^{p}(\mathcal{H})$ $(1 \leq p \leq +\infty)$ is in $\Psi_{p}(\mathcal{H})$ if, and only if, for each multi-indices α and β , the operator (ad P)^{α} (ad Q)^{β} A (a priori defined as an operator from $\mathcal{S}(\mathbb{R}^{n})$ to $\mathcal{S}'(\mathbb{R}^{n})$) is in $\mathcal{L}^{p}(\mathcal{H})$.

If $p = +\infty$, Theorem 2.1 is a very classical result, the Beals characterization of pseudo-differential operators [2]. If $p < +\infty$, it has been proved in C. Rondeaux [4].

Let Π be the representation of H_n in $\mathcal{L}(\mathcal{S}(\mathbb{R}^n), \mathcal{S}'(\mathbb{R}^n))$ defined as in (5), i.e. for each $g \in H_n$, for each A in $\mathcal{L}(\mathcal{S}(\mathbb{R}^n), \mathcal{S}'(\mathbb{R}^n))$, for each φ and ψ in $\mathcal{S}(\mathbb{R}^n)$:

$$\left\langle \Pi(g)(A)\varphi,\psi\right\rangle = \left\langle A\pi(g)^{-1}\varphi,\pi(g)^{-1}\psi\right\rangle \tag{8}$$

By definition (3), we see that, if A is in $\mathcal{L}(\mathcal{H})$, if φ and ψ are in $\mathcal{S}(\mathbb{R}^n)$, both sides of this equality are C^{∞} functions in H_n , and that, for each g = (X, Y, t) in H_n , we have:

$$\frac{\partial}{\partial X_j} \langle \Pi(X, Y, t)(A)\varphi, \psi \rangle = \langle \Pi(X, Y, t) ([P_j, A])\varphi, \psi \rangle$$
(9)

$$\frac{\partial}{\partial Y_j} \langle \Pi(X, Y, t)(A)\varphi, \psi \rangle = i \langle \Pi(X, Y, t) ([Q_j, A])\varphi, \psi \rangle$$
(10)

$$\frac{\partial}{\partial t} \langle \Pi(X, Y, t)(A)\varphi, \psi \rangle = 0$$
(11)

We may iterate, and we shall use Taylor expansions of the left side of (8).

If A is a C^{∞} vector of Π_p , we may replace Π by Π_p in the left side of (9), and equality (9), taken at the origin, shows that $[P_i, A]$ is in $\mathcal{L}^p(\mathcal{H})$, and that the following equality:

$$\frac{\partial \Pi_p(X, Y, t)(A)}{\partial X_j} = \Pi_p(X, Y, t) ([P_j, A])$$
(12)

is valid at the origin. Since Π_p is a norm preserving representation, it follows that the same equality is valid for each g in H_n . Since A is a C^{∞} vector of the representation Π_p , it follows that $[P_j, A]$ is also a C^{∞} vector of Π_p . It is the same for $[Q_j, A]$, and we have:

$$\frac{\partial \Pi_p(X, Y, t)(A)}{\partial Y_j} = i \Pi_p(X, Y, t) ([Q_j, A]), \qquad \frac{\partial \Pi_p(X, Y, t)(A)}{\partial t} = 0$$
(13)

Therefore, we can iterate the same argument, replacing *A* by these commutators, and prove by induction that all the commutators (7) are C^{∞} vectors of the representation Π_p , and in particular that they are in $\mathcal{L}^p(\mathcal{H})$. By Theorem 2.1, it follows that *A* is in $\Psi_p(\mathcal{H})$.

Before proving the converse, we have to make clear a question of continuity for $p = +\infty$. Let A be in $\mathcal{L}(\mathcal{H})$, such as the commutators $[P_j, A]$ and $[Q_j, A]$. We write a Taylor expansion of the left-hand side of (8). For each g = (X, Y, t) in H_n , for each φ and ψ in $\mathcal{S}(\mathbb{R}^n)$, we may write:

$$\left\langle \left(\Pi(X,Y,t)(A)-A\right)\varphi,\psi\right\rangle = \sum_{j=1}^{n} \left[X_{j}A_{j}(X,Y,t,A,\varphi,\psi)+Y_{j}A_{j}(X,Y,t,A,\varphi,\psi)\right]$$

where:

$$A_{j}(X, Y, t, A, \varphi, \psi) = \int_{0}^{1} \langle \Pi(\theta X, \theta Y, \theta t) ([P_{j}, A]) \varphi, \psi \rangle d\theta$$

and where $B_j(g, A, \varphi, \psi)$ is defined in a similar way. We may replace Π by Π_∞ above. Since Π_∞ is a norm preserving representation, it follows that $|A_j(g, A, \varphi, \psi)| \leq ||[P_j, A]||_{\mathcal{L}(\mathcal{H})} ||\varphi||_{\mathcal{H}} ||\psi||_{\mathcal{H}}$ and similarly for $B_j(g, A, \varphi, \psi)$. Then it follows that the map $g \to \Pi_\infty(g)(A)$ is continuous from H_n to $\mathcal{L}(\mathcal{H})$ at the origin, and, since Π_p is norm preserving, this map is continuous in all H_n .

If *A* is in $\Psi_p(\mathcal{H})$, Theorem 2.1 and the remark above show that *A* and all the commutators (7) are continuous vectors of the representation Π_p . (The above remarks are needed only for $p = +\infty$.) Hence, the following functions:

$$\begin{split} A_{jk}(X,Y,t) &= \int_{0}^{1} \Pi_{p}(\theta X,\theta Y,\theta t) \left(\left[P_{j}, \left[P_{k}, A \right] \right] \right) \mathrm{d}\theta, \qquad B_{jk}(X,Y,t) = i \int_{0}^{1} \Pi_{p}(\theta X,\theta Y,\theta t) \left(\left[P_{j}, \left[Q_{k}, A \right] \right] \right) \mathrm{d}\theta \\ C_{jk}(X,Y,t) &= -\int_{0}^{1} \Pi_{p}(\theta X,\theta Y,\theta t) \left(\left[Q_{j}, \left[Q_{k}, A \right] \right] \right) \mathrm{d}\theta \end{split}$$

are continuous and bounded in H_n , with values in $\mathcal{L}^p(\mathcal{H})$. The function L defined in H_n by

$$L(X, Y, t) = \Pi_p(X, Y, t)(A) - A - \sum_{j=1}^n \left[X_j \Pi_p ([P_j, A]) + i Y_j \Pi_p ([Q_j, A]) \right] - \frac{1}{2} \sum_{1 \le j, k \le n} \left[X_j X_k A_{jk}(X, Y, t) + 2 X_j Y_k B_{jk}(X, Y, t) + Y_j Y_k C_{jk}(X, Y, t) \right]$$

is also continuous in H_n , with values in $\mathcal{L}^p(\mathcal{H})$. For each φ and ψ in $\mathcal{S}(\mathbb{R}^n)$, we may write a Taylor expansion of the left-hand side of (8), which is C^{∞} , using (9), (10) and (11), and replacing Π by Π_p . We get $\langle L(X, Y, t)\varphi, \psi \rangle = 0$ for all φ and ψ in $\mathcal{S}(\mathbb{R}^n)$, and therefore L(X, Y, t) = 0. It follows that the map (6), from H_n to $\mathcal{L}^p(\mathcal{H})$, is differentiable at the origin, and that its partial derivatives are given by (12) and (13) at the origin. Since Π_p is a norm preserving representation, the map $g \to \Pi_p(g)(A)$ is differentiable in H_n , and its partial derivatives are still given by (12) and (13). By the above remark, the map (6) is C^1 . By iterating, we see that this map is C^{∞} from H_n to $\mathcal{L}^p(\mathcal{H})$. Point a) of Theorem 1.1 is proved.

3. Proof of point b) of Theorem 1.1

Let *A* be an operator in $\mathcal{L}^p(\mathcal{H})$ $(1 \le p \le +\infty)$ which is the limit, in $\mathcal{L}^p(\mathcal{H})$, of a sequence (A_j) of operators in $\Psi_p(\mathcal{H})$. By the point a) of Theorem 1.1, the functions $g \to \Pi_p(g)(A_j)$ are C^{∞} from H_n to $\mathcal{L}^p(\mathcal{H})$. We have, for each g in H_n :

$$\left\|\Pi_{p}(g)(A_{j}-A)\right\|_{\mathcal{L}^{p}(\mathcal{H})} \leq \|A_{j}-A\|_{\mathcal{L}^{p}(\mathcal{H})}$$

$$\tag{14}$$

Therefore, the function (6), being a uniform limit, in H_n , of a sequence of C^{∞} functions with values in $\mathcal{L}^p(\mathcal{H})$, is itself continuous from H_n to $\mathcal{L}^p(\mathcal{H})$.

Conversely, let *A* be a continuous vector of the representation Π_p . In order to give a suitable approximation of *A*, we define, for each $\lambda > 0$, the following operator:

$$\mathcal{T}_{\lambda}^{(p)}A = (\pi\lambda)^{-n} \int_{\mathbb{R}^{2n}} e^{-\frac{|X|^2 + |Y|^2}{\lambda}} \Pi_p(X, Y, 0)(A) \, \mathrm{d}X \, \mathrm{d}Y$$

This operator was already used in [1] (Section 5). We remark that:

$$\Pi_{p}(X, Y, t) \left(\mathcal{T}_{\lambda}^{(p)} A \right) = (\pi \lambda)^{-n} \int_{\mathbb{R}^{2n}} e^{-\frac{|X'-X|^{2} + |Y'-Y|^{2}}{\lambda}} \Pi_{p} \left(X', Y', 0 \right) (A) \, \mathrm{d}X' \, \mathrm{d}Y'$$

Then, it is clear that the function $g \to \Pi_p(g)(\mathcal{T}^{(p)}_{\lambda}A)$ is C^{∞} from H_n to $\mathcal{L}^p(\mathcal{H})$. By point a) of Theorem 1.1, $\mathcal{T}^{(p)}_{\lambda}A$ is an element of $\Psi_p(\mathcal{H})$. Since A is a continuous vector of Π_p , we have:

$$\lim_{\lambda \to 0} \left\| \mathcal{T}_{\lambda}^{(p)} A - A \right\|_{\mathcal{L}^{p}(\mathcal{H})} = 0$$

The proof is similar to that of the analogous elementary result for convolutions. It follows that the closure of $\Psi_p(\mathcal{H})$ in $\mathcal{L}^p(\mathcal{H})$ is the set of continuous vectors of Π_p . If $p < +\infty$, this set is all $\mathcal{L}^p(\mathcal{H})$.

References

- [1] L. Amour, M. Khodja, J. Nourrigat, The classical limit of the time dependent Hartree-Fock equation. II. The Wick symbol of the solution, arXiv:1112.6186.
- [2] R. Beals, Characterization of pseudo-differential operators and applications, Duke Math. J. 44 (1) (1977) 45–57.
 [3] A.-P. Calderón, R. Vaillancourt, A class of bounded pseudo-differential operators, Proc. Natl. Acad. Sci. USA 69 (1972) 1185–1187.
- [4] C. Rondeaux, Classes de Schatten d'opérateurs pseudo-différentiels, Ann. E.N.S. 17 (1) (1984) 67–81.
- [5] B. Simon, Trace Ideals and Their Applications, second edition, Math. Surveys and Monographs, vol. 120, Amer. Math. Soc., 2005.