

**Functional Analysis** 

#### Contents lists available at SciVerse ScienceDirect

## C. R. Acad. Sci. Paris, Ser. I



www.sciencedirect.com

# On the binary relation $\leq_u$ on self-adjoint Hilbert space operators

## *Relation binaire* $\leq_u$ *sur un espace de Hilbert d'opérateurs auto-adjoints*

### M.S. Moslehian, S.M.S. Nabavi Sales, H. Najafi

Department of Pure Mathematics, Center of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran

#### ARTICLE INFO

Article history: Received 25 November 2011 Accepted after revision 10 April 2012 Available online 4 May 2012

Presented by the Editorial Board

#### ABSTRACT

Given self-adjoint operators  $A, B \in \mathbb{B}(\mathscr{H})$  it is said  $A \leq_u B$  whenever  $A \leq U^*BU$  for some unitary operator U. We show that  $A \leq_u B$  if and only if  $f(g(A)^r) \leq_u f(g(B)^r)$  for any increasing operator convex function f, any operator monotone function g and any positive number r. We present some sufficient conditions under which if  $B \leq A \leq U^*BU$ , then  $B = A = U^*BU$ . Finally we prove that if  $A^n \leq U^*A^nU$  for all  $n \in \mathbb{N}$ , then  $A = U^*AU$ .

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

#### RÉSUMÉ

Soient  $A, B \in \mathbb{B}(\mathcal{H})$  des opérateurs auto-adjoints donnés, on dit que  $A \leq_u B$  si  $A \leq U^*BU$ , où U est un opérateur unitaire. On montre que  $A \leq_u B$  si et seulement si  $f(g(A)^r) \leq_u f(g(B)^r)$  pour toute fonction d'opérateurs f, convexe et croissante, toute fonction d'opérateurs g, monotone et tout nombre r positif. On donne des conditions nécessaires et suffisantes pour que  $B \leq A \leq U^*BU$  implique  $B = A = U^*BU$ . Enfin on montre que si  $A^n \leq U^*A^nU$  pour tout  $n \in \mathbb{N}$  alors  $A = U^*AU$ .

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

#### 1. Introduction

Let  $\mathbb{B}(\mathscr{H})$  be the algebra of all bounded linear operators on a complex Hilbert space  $\mathscr{H}$  with the identity I, let  $\mathbb{B}_h(\mathscr{H})$  be the real linear space of all self-adjoint operators and let  $\mathcal{U}(\mathscr{H})$  be the set of all unitary operators in  $\mathbb{B}(\mathscr{H})$ . By an orthogonal projection we mean an operator  $P \in \mathbb{B}_h(\mathscr{H})$  such that  $P^2 = P$ . An operator  $A \in \mathbb{B}(\mathscr{H})$  is called positive if  $\langle Ax, x \rangle \ge 0$  for every  $x \in \mathscr{H}$  and then we write  $A \ge 0$ . If A is a positive invertible operator we write A > 0. For  $A, B \in \mathbb{B}_h(\mathscr{H})$  we say that  $A \le B$  if  $B - A \ge 0$ . The celebrated Löwner–Heinz inequality asserts that the operator inequality  $T \ge S \ge 0$  implies  $T^{\alpha} \ge S^{\alpha}$  for any  $\alpha \in [0, 1]$ , see [4, Theorem 3.2.1]. An operator T is called hyponormal if  $T^*T \ge TT^*$ .

Douglas [2] investigated the operator inequality  $T^*HT \leq H$ , with H Hermitian and showed that if P is a positive compact operator and A is a contraction such that  $P \leq A^*PA$ , then  $P = A^*PA$ ; see also [3].

Given operators  $A, B \in \mathbb{B}_h(\mathscr{H})$  it is said that  $A \leq_u B$  whenever  $A \leq U^*BU$  for some  $U \in \mathcal{U}(\mathscr{H})$ ; see [6,9]. This binary relation was investigated by Kosaki [6] by showing that

$$A \leq_{u} B \Rightarrow e^{A} \leq_{u} e^{B}.$$

1631-073X/\$ – see front matter © 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.crma.2012.04.004 (1)

*E-mail addresses*: moslehian@ferdowsi.um.ac.ir, moslehian@member.ams.org (M.S. Moslehian), sadegh.nabavi@gmail.com (S.M.S. Nabavi Sales), hamednajafi20@gmail.com (H. Najafi).

Okayasu and Ueta [9] gave a sufficient condition for a triple of operators (A, B, U) with  $A, B \in \mathbb{B}_h(\mathscr{H})$  and  $U \in \mathcal{U}(\mathscr{H})$  under which  $B \leq A \leq U^*BU$  implies  $B = A = U^*BU$ . In this note we use their idea and prove a similar result. It is known that  $\leq_u$ satisfies the reflexive and transitive laws but not the antisymmetric law in general; cf. [9]. The antisymmetric law states that  $A \leq_u B$  and  $B \leq_u A \Rightarrow A$ , B are unitarily equivalent. We, among other things, study some cases in which the antisymmetric law holds for the relation  $\leq_u$ . Utilizing a result of [8] we show that  $A \leq_u B$  if and only if  $f(g(A)^r) \leq_u f(g(B)^r)$  for any increasing operator convex function f, any operator monotone function g and any positive number r. Recall that a real function f defined on an interval J is said to be operator convex if  $f(\lambda A + (1 - \lambda)B) \leq \lambda f(A) + (1 - \lambda)f(B)$  for any  $A, B \in \mathbb{B}_h(\mathscr{H})$  with spectra in J and  $\lambda \in [0, 1]$  and is called operator monotone if  $f(A) \leq f(B)$  whenever  $A \leq B$  for any  $A, B \in \mathbb{B}_h(\mathscr{H})$  with spectra in J, see [11].

#### 2. The results

First we give the following known lemmas that we need in the sequel. The first one is applied frequently without referring to it.

**Lemma 2.1.** Let  $A \in \mathbb{B}_h(\mathscr{H})$  and  $U \in \mathcal{U}(\mathscr{H})$ . Then  $f(U^*AU) = U^*f(A)U$  for any function f which is continues on the spectra of A.

**Lemma 2.2.** (See [7, Theorems 2.1, 2.3].) Let  $T \in \mathbb{B}(\mathcal{H})$  be hyponormal and T = U|T| be the polar decomposition of T such that  $U^{n_0} = I$  for some positive integer  $n_0$ ,  $U^{*n} \to I$  as  $n \to \infty$  or  $U^n \to I$  as  $n \to \infty$ , where the limits are taken in the strong operator topology. Then T is normal.

**Lemma 2.3.** Let  $U, V \in \mathcal{U}(\mathcal{H})$  be two commuting operators such that  $U^n \to I$  and  $V^n \to I$  as  $n \to \infty$ . Then  $(UV)^n \to I$  as  $n \to \infty$ , where all limits are taken in the strong operator topology.

**Theorem 2.4.** Let  $U \in \mathcal{U}(\mathcal{H})$  such that any one of the following conditions holds:

- (i)  $U^{n_0} = I$  for some positive integer  $n_0$ ,
- (ii)  $U^n \to I$  as  $n \to \infty$  in which the limit is taken in the strong operator topology.

Then  $B \leq A \leq U^*BU$  implies that  $B = A = U^*BU$  for any  $A, B \in \mathbb{B}_h(\mathcal{H})$ .

**Proof.** Let  $A, B \in \mathbb{B}_h(\mathscr{H})$  such that  $B \leq A \leq U^*BU$ . There exist  $\lambda > 0$  such that  $B + \lambda > 0$ . Put  $T = (B + \lambda)^{\frac{1}{2}}U$ . By our assumption we have

$$TT^* = B + \lambda \leqslant A + \lambda \leqslant U^*(B + \lambda)U = T^*T.$$
(2)

Thus *T* is a hyponormal operator. Obviously  $|T| = U^*(B + \lambda)^{\frac{1}{2}}U = U^*T$ . Let T = V|T| be the polar decomposition of *T*. Hence  $T = VU^*T$ . It follows from the invertibility of *T* that  $I = VU^*$ , that is, U = V. Thus *T* satisfies the conditions of Lemma 2.2. Therefore *T* turns out to be normal. Then (2) yields that  $B = A = U^*BU$ .  $\Box$ 

**Corollary 2.5.** Let  $U, V \in \mathcal{U}(\mathcal{H})$  be two commuting operators satisfying any one of the following conditions:

- (i)  $U^{n_0} = I$  and  $V^{n_0} = I$  for some positive integer  $n_0$ ,
- (ii)  $U^n \to I$  and  $V^n \to I$  as  $n \to \infty$ ,

where all limits are taken in the strong operator topology. If  $A, B \in \mathbb{B}_h(\mathscr{H})$  such that  $A \leq U^*BU$  and  $B \leq V^*AV$ , then  $A = U^*BU$  and  $B = V^*AV$ .

**Proof.** By Lemma 2.3, the unitary operator UV satisfies the conditions of Theorem 2.4.

The following lemmas are used in the proof of Theorem 2.8:

**Lemma 2.6.** (See [4, Theorem 3.2.3.1].) If  $0 < A \le B$ , then  $\log(A) \le \log(B)$ .

**Lemma 2.7.** (See [8, Theorem 2.6].) Let  $A, B \in \mathbb{B}(\mathcal{H})$  be two positive operators. Then  $B^2 \leq A^2$  if and only if for each operator convex function f on  $[0, \infty)$  with  $f'_+(0) \geq 0$  it holds that  $f(B) \leq f(A)$ .

If *f* is an increasing operator convex function, then  $f'_+(0) \ge 0$ . The converse is also true. In fact *f* can be represented as  $f(t) = f(0) + \beta t + \gamma t^2 + \int_0^\infty \frac{\lambda t^2}{\lambda + t} d\mu(\lambda)$ , where  $\gamma \ge 0$ ,  $\beta = f'_+(0)$  and  $\mu$  is a positive measure on  $[0, \infty)$ ; see [1, Chapter V].

Hence if  $f'_+(0)$ , then  $f'(t) = f'_+(0) + 2\gamma t + \int_0^\infty \frac{2\lambda t + \lambda t^2}{(\lambda + t)^2} d\mu(\lambda) \ge 0$  for each  $t \in [0, \infty)$ . Now we are ready to state our next result.

**Theorem 2.8.** Let A and B be two positive operators. Then  $A \leq_u B$  if and only if  $f(g(A)^r) \leq_u f(g(B)^r)$  for any increasing operator convex function f, any operator monotone function g and any positive number r.

**Proof.** First we assume that  $0 < A \le U^*BU$  for some operator  $U \in \mathcal{U}(\mathcal{H})$ . Then  $0 < g(A) \le g(U^*BU) = U^*g(B)U$  for any operator monotone function g. Let r be a positive number. By Lemma 2.6 we have  $\log(g(A)) \le U^*\log(g(B))U$ . Hence  $\log(g(A)^{2r}) \le \log(U^*g(B)^{2r}U)$ . Thus by Kosaki's result (1) there is an operator  $V \in \mathcal{U}(\mathcal{H})$  such that  $e^{\log g(A)^{2r}} \le V^*e^{\log(U^*g(B)^{2r}U)}V$ , that is  $g(A)^{2r} \le V^*U^*g(B)^{2r}UV = (V^*U^*g(B)UV)^{2r}$ . From which and Lemma 2.7 we conclude that

$$f(g(A)^r) \leqslant f((V^*U^*g(B)UV)^r) = V^*U^*f(g(B)^r)UV$$
(3)

for any increasing operator convex function f. This means that  $f(g(A)^r) \leq_u f(g(B)^r)$  as desired.

For the general case note that the condition  $0 \le A \le U^*BU$  ensures  $0 < A + \varepsilon \le U^*(B + \varepsilon)U$  for all  $\varepsilon > 0$ . Now the general result is deduced from the paragraph above and a limit argument by letting  $\varepsilon$  tend to 0.

The reverse is clear by taking f(x) = x and r = 1.  $\Box$ 

From Theorem 2.8 one can see that if  $A \leq_u B$ , then there exists a sequence  $\{U_n\}_{n \in \mathbb{N}} \subset \mathcal{U}(\mathscr{H})$  such that  $A^n \leq U_n^* B^n U_n$ . An interesting problem is finding an operator  $U \in \mathcal{U}(\mathscr{H})$  such that  $A^n \leq U^* B^n U$  for any positive integer *n*. If there exist a sequence  $\{U_n\}_{n \in \mathbb{N}} \subset \mathcal{U}(\mathscr{H})$  such that  $A^n \leq U_n^* B^n U_n$  and in the strong operator topology  $\{U_n\}$  converges to an operator  $U \in \mathcal{U}(\mathscr{H})$ , then *U* is the desired unitary operator. To see this let  $\xi \in \mathscr{H}$ ,  $n \in \mathbb{N}$  and m > n. Then

$$\langle A^n\xi,\xi\rangle \leqslant \langle U_m^*B^n U_m\xi,\xi\rangle = \langle B^n U_m\xi, U_m\xi\rangle. \tag{4}$$

Note that in the inequality of (4) we used  $\alpha = \frac{m}{n}$  in the Löwner–Heinz inequality. By our assumption we have  $\langle B^n U_m \xi, U_m \xi \rangle \rightarrow \langle B^n U \xi, U \xi \rangle = \langle U^* B^n U \xi, \xi \rangle$  as  $m \rightarrow \infty$ , which by (4) implies that  $A^n \leq U^* B^n U$  as requested.

The next theorem is related to the problem above. First we need to introduce our notation. For any two positive operators *A* and *B* and any positive integer *n* let  $\mathcal{K}_{n,A,B} = \{U \in \mathcal{U}(\mathscr{H}): A^n \leq U^*B^nU\}$ . This set is compact in the case when  $\mathscr{H}$  is finite dimensional. Further,  $A \leq U^*BU$  for some unitary matrix *U* if  $\lambda_j(A) \leq \lambda_j(B)$   $(1 \leq j \leq n)$ , where  $\lambda_1(\cdot) \geq \cdots \geq \lambda_n(\cdot)$  denotes eigenvalues arranged in the decreasing order with their multiplicities counted. Thus  $\mathcal{K}_{n,A,B}$  can be nonempty. Our next result reads as follows.

**Theorem 2.9.** Suppose that A and B are two positive operators such that  $\mathcal{K}_{n_0,A,B}$  is a nonempty set, which is either compact in the strong operator topology or closed in the weak operator topology for some positive integer  $n_0$ . Then there exists an operator  $U \in \mathcal{U}(\mathcal{H})$  such that  $A^n \leq U^*B^nU$  for every positive integer n.

**Proof.** First assume that  $\mathcal{K}_{n_0,A,B}$  is a nonempty strongly compact set for some positive integer  $n_0$ . Without loss of generality we may assume that  $n_0 = 1$ . Let us set  $\mathcal{K}_n$  instead of  $\mathcal{K}_{n,A,B}$  for the sake of simplicity. Using the Löwner–Heinz inequality one easily see that for any positive integer n

$$\mathcal{K}_{n+1} \subseteq \mathcal{K}_n. \tag{5}$$

We show that the sets  $\mathcal{K}_n$  are strongly closed. To achieve this aim, fix n and let  $\{U_\alpha\}$  be a net in  $\mathcal{K}_n$  such that  $U_\alpha \to U$  in which the limit is taken in the strong operator topology. Since  $\mathcal{K}_n \subseteq \mathcal{K}_1$  and  $\mathcal{K}_1$  is assumed to be a strongly compact set, we conclude that  $U \in \mathcal{K}_1$  which implies that  $U \in \mathcal{U}(\mathcal{H})$ . Let  $\xi \in \mathcal{H}$ . We have

$$\langle A^{n}\xi,\xi\rangle \leqslant \langle U_{\alpha}^{*}B^{n}U_{\alpha}\xi,\xi\rangle = \langle B^{n}U_{\alpha}\xi,U_{\alpha}\xi\rangle.$$
(6)

Since  $\{U_{\alpha}\}$  converges strongly to U we obtain

$$\langle B^n U_\alpha \xi, U_\alpha \xi \rangle \to \langle B^n U \xi, U \xi \rangle = \langle U^* B^n U \xi, \xi \rangle. \tag{7}$$

Applying (6) and (7) we get  $A^n \leq U^*B^nU$ . Thus  $U \in \mathcal{K}_n$ . Hence  $\mathcal{K}_n$  is closed. Now Theorem 2.8 shows that the sets  $\mathcal{K}_n$  are nonempty and (5) shows that  $\bigcap_{n \in \mathbb{F}} \mathcal{K}_n = \mathcal{K}_{\max F} \neq \phi$  for any arbitrary finite subset F of  $\mathbb{N}$ . Hence  $\bigcap_{n \in \mathbb{N}} \mathcal{K}_n \neq \phi$  because the  $\mathcal{K}_n$  are closed subsets of  $\mathcal{K}_1$  and  $\mathcal{K}_1$  is compact.

Second, assume that  $\mathcal{K}_{n_0}$  is a weakly closed nonempty set for some positive integer  $n_0$ . Due to the unit ball of  $\mathbb{B}(\mathscr{H})$  is weakly compact, we can repeat the first argument and reach to the desired consequence.  $\Box$ 

Now we aim to prove our last result. We state some lemmas which are interesting on their own right.

**Lemma 2.10.** Let  $P \in \mathbb{B}(\mathcal{H})$  be an orthogonal projection and  $U \in \mathcal{U}(\mathcal{H})$  such that  $P \leq U^* P U$ . Then  $P = U^* P U$ .

**Proof.** Let  $ran(P) = \mathcal{H}_1$  and let  $I_1$  and  $I_2$  be the identity operators on  $\mathcal{H}_1$  and  $\mathcal{H}_1^{\perp}$ , respectively. Therefore  $P = I_1 \oplus 0$  and  $U = \begin{pmatrix} U_1 & U_2 \\ U_3 & U_4 \end{pmatrix}$  on  $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_1^{\perp}$ . From  $P \leq U^* P U$  we reach to the following inequality:

$$\begin{pmatrix} I_1 & 0\\ 0 & 0 \end{pmatrix} \leqslant \begin{pmatrix} U_1^* U_1 & U_1^* I_1 U_2\\ U_2^* I_1 U_1 & U_2^* I_1 U_2 \end{pmatrix},$$
(8)

which implies that  $I_1 \leq U_1^* U_1$ . Since  $U^* U = I$  hence

$$\begin{pmatrix} U_1^*U_1 + U_3^*U_3 & U_1^*U_3 + U_3^*U_4 \\ U_2^*U_1 + U_4^*U_3 & U_2^*U_2 + U_4^*U_4 \end{pmatrix} = \begin{pmatrix} I_1 & 0 \\ 0 & I_2 \end{pmatrix}.$$
(9)

From (8) and (9) we see that  $I_1 = U_1^* U_1$ ,  $U_3 = 0$  and  $U_2^* U_1 = 0$ . Thus  $U_2^* = U_2^* U_1 U_1^* = 0$  and this ensures that  $U^* P U = \begin{pmatrix} U_1^* U_1 & 0 \\ 0 & 0 \end{pmatrix} = P$  as desired.  $\Box$ 

In the sequel we need to use the structure of the spectral family  $\{E_{\lambda}(A)\}$  corresponding to an operator  $A \in \mathbb{B}_{h}(\mathscr{H})$ ; cf. [5]. Recall that  $E_{\lambda}(A)$  can be defined as the strong operator limit  $\varphi_{\lambda}(A)$  of the sequence  $\{\varphi_{\lambda,n}(A)\}$ , where  $\{\varphi_{\lambda,n}\}$  is a sequence of decreasing nonnegative continuous functions on the real line pointwise converging to the following function defined on the spectrum sp(A) of A:

$$\varphi_{\lambda}(t) = \begin{cases} 1 & \text{if } -\infty < t \leq \lambda, \\ 0 & \text{if } \lambda < t < \infty. \end{cases}$$

**Remark 2.11.** It follows from Lemma 2.1 that if *A* is a positive operator and  $U \in \mathcal{U}(\mathcal{H})$ , then  $E_{\lambda}(U^*AU) = U^*E_{\lambda}(A)U$  for every  $\lambda \in \mathbb{R}$ .

**Lemma 2.12.** (See [10, Theorem 3].) Let A and B be positive operators in  $\mathbb{B}(\mathscr{H})$ . Then  $A^n \leq B^n$  for  $n \in \mathbb{N}$  if and only if  $E_{\lambda}(A) \leq E_{\lambda}(B)$  for every  $\lambda \in \mathbb{R}$ .

**Theorem 2.13.** Let A be a positive operator and  $U \in U(\mathcal{H})$  such that  $A^n \leq U^*A^nU$  for all  $n \in \mathbb{N}$ . Then  $A = U^*AU$ .

**Proof.** From Lemma 2.12 and Remark 2.11 we see  $E_{\lambda}(A) \leq E_{\lambda}(U^*AU) = U^*E_{\lambda}(A)U$ . Thus from Lemma 2.10 we have  $E_{\lambda}(A) = U^*E_{\lambda}(A)U$ , which implies that  $UE_{\lambda}(A) = E_{\lambda}(A)U$  for every  $\lambda \in \mathbb{R}$ . Hence UA = AU, or equivalently  $A = U^*AU$ .  $\Box$ 

**Corollary 2.14.** Suppose that A and B are two positive operators such that  $\mathcal{K}_{n_0,A,B}$  and  $\mathcal{K}_{m_0,B,A}$  are either strongly compact or weakly closed nonempty sets for some positive integers  $n_0$  and  $m_0$ , respectively. Then A and B are unitarily equivalent.

**Proof.** By Theorem 2.9 there exist operators  $U, V \in \mathcal{U}(\mathscr{H})$  such that  $A^n \leq U^*B^nU$  and  $B^n \leq V^*A^nV$  for all  $n \in \mathbb{N}$ . Thus  $A^n \leq U^*B^nU \leq U^*V^*A^nVU$ . Now the result is obtained from Theorem 2.13.  $\Box$ 

#### Acknowledgements

The authors would like to thank the referee for several useful comments. This research was supported by a grant from the Ferdowsi University of Mashhad (No. MP91266MOS).

#### References

- [1] R. Bhatia, Matrix Analysis, Springer, New York, 1997.
- [2] R.G. Douglas, On the operator equation  $S^*XT = X$  and related topics, Acta Sci. Math. (Szeged) 30 (1969) 19–32.
- [3] B.P. Duggal, The operator inequality  $P \leq A^*PA$ , Proc. Amer. Math. Soc. 109 (3) (1990) 697–698.
- [4] T. Furuta, Invitation to Linear Operators, Taylor and Francis, London, New York, 2001.
- [5] G. Helmberg, Introduction to Spectral Theory in Hilbert Space, John Wiley & Sons, New York, 1969.
- [6] H. Kosaki, On some trace inequality, Proc. Center Math. Anal. Austral. Nat. Univ. 29 (1992) 129-134.
- [7] M.S. Moslehian, S.M.S. Nabavi Sales, Some conditions implying normality of operators, C. R. Acad. Sci. Paris, Ser. I 349 (2011) 251-254.
- [8] M.S. Moslehian, H. Najafi, Around operator monotone functions, Integral Equations Operator Theory 71 (4) (2011) 575-582.
- [9] T. Okayasu, Y. Ueta, A condition under which  $B = A = U^*BU$  follows from  $B \ge A \ge U^*BU$ , Proc. Amer. Math. Soc. 135 (5) (2007) 1399–1403.
- [10] M.Ph. Olson, The selfadjoint operators of a Von Neumann algebra form a conditionally complete lattice, Proc. Amer. Math. Soc. 28 (2) (1971) 537-544.
- [11] M. Uchiyama, Operator monotone functions which are defined implicitly and operator inequalities, J. Funct. Anal. 175 (2) (2000) 330-347.