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Given self-adjoint operators A, B ∈ B(H ) it is said A �u B whenever A � U∗ BU for some
unitary operator U . We show that A �u B if and only if f (g(A)r) �u f (g(B)r) for any
increasing operator convex function f , any operator monotone function g and any positive
number r. We present some sufficient conditions under which if B � A � U∗ BU , then
B = A = U∗ BU . Finally we prove that if An � U∗ AnU for all n ∈N, then A = U∗ AU .

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soient A, B ∈ B(H ) des opérateurs auto-adjoints donnés, on dit que A �u B si A �
U∗ BU , où U est un opérateur unitaire. On montre que A �u B si et seulement si
f (g(A)r) �u f (g(B)r) pour toute fonction d’opérateurs f , convexe et croissante, toute
fonction d’opérateurs g, monotone et tout nombre r positif. On donne des conditions
nécessaires et suffisantes pour que B � A � U∗ BU implique B = A = U∗ BU . Enfin on
montre que si An � U∗ AnU pour tout n ∈N alors A = U∗ AU .

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let B(H ) be the algebra of all bounded linear operators on a complex Hilbert space H with the identity I , let Bh(H )

be the real linear space of all self-adjoint operators and let U(H ) be the set of all unitary operators in B(H ). By an
orthogonal projection we mean an operator P ∈ Bh(H ) such that P 2 = P . An operator A ∈ B(H ) is called positive if
〈Ax, x〉 � 0 for every x ∈ H and then we write A � 0. If A is a positive invertible operator we write A > 0. For A, B ∈ Bh(H )

we say that A � B if B − A � 0. The celebrated Löwner–Heinz inequality asserts that the operator inequality T � S � 0
implies T α � Sα for any α ∈ [0,1], see [4, Theorem 3.2.1]. An operator T is called hyponormal if T ∗T � T T ∗ .

Douglas [2] investigated the operator inequality T ∗H T � H , with H Hermitian and showed that if P is a positive compact
operator and A is a contraction such that P � A∗ P A, then P = A∗ P A; see also [3].

Given operators A, B ∈ Bh(H ) it is said that A �u B whenever A � U∗BU for some U ∈ U(H ); see [6,9]. This binary
relation was investigated by Kosaki [6] by showing that

A �u B ⇒ e A �u eB . (1)

E-mail addresses: moslehian@ferdowsi.um.ac.ir, moslehian@member.ams.org (M.S. Moslehian), sadegh.nabavi@gmail.com (S.M.S. Nabavi Sales),
hamednajafi20@gmail.com (H. Najafi).
1631-073X/$ – see front matter © 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
http://dx.doi.org/10.1016/j.crma.2012.04.004

http://dx.doi.org/10.1016/j.crma.2012.04.004
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:moslehian@ferdowsi.um.ac.ir
mailto:moslehian@member.ams.org
mailto:sadegh.nabavi@gmail.com
mailto:hamednajafi20@gmail.com
http://dx.doi.org/10.1016/j.crma.2012.04.004


408 M.S. Moslehian et al. / C. R. Acad. Sci. Paris, Ser. I 350 (2012) 407–410
Okayasu and Ueta [9] gave a sufficient condition for a triple of operators (A, B, U ) with A, B ∈ Bh(H ) and U ∈ U(H ) under
which B � A � U∗BU implies B = A = U∗BU . In this note we use their idea and prove a similar result. It is known that �u

satisfies the reflexive and transitive laws but not the antisymmetric law in general; cf. [9]. The antisymmetric law states that
A �u B and B �u A ⇒ A, B are unitarily equivalent. We, among other things, study some cases in which the antisymmetric
law holds for the relation �u . Utilizing a result of [8] we show that A �u B if and only if f (g(A)r) �u f (g(B)r) for any
increasing operator convex function f , any operator monotone function g and any positive number r. Recall that a real
function f defined on an interval J is said to be operator convex if f (λA + (1 − λ)B) � λ f (A) + (1 − λ) f (B) for any
A, B ∈ Bh(H ) with spectra in J and λ ∈ [0,1] and is called operator monotone if f (A) � f (B) whenever A � B for any
A, B ∈ Bh(H ) with spectra in J , see [11].

2. The results

First we give the following known lemmas that we need in the sequel. The first one is applied frequently without
referring to it.

Lemma 2.1. Let A ∈ Bh(H ) and U ∈ U(H ). Then f (U∗ AU ) = U∗ f (A)U for any function f which is continues on the spectra of A.

Lemma 2.2. (See [7, Theorems 2.1, 2.3].) Let T ∈ B(H ) be hyponormal and T = U |T | be the polar decomposition of T such that
Un0 = I for some positive integer n0 , U∗n → I as n → ∞ or Un → I as n → ∞, where the limits are taken in the strong operator
topology. Then T is normal.

Lemma 2.3. Let U , V ∈ U(H ) be two commuting operators such that U n → I and V n → I as n → ∞. Then (U V )n → I as n → ∞,
where all limits are taken in the strong operator topology.

Theorem 2.4. Let U ∈ U(H ) such that any one of the following conditions holds:

(i) Un0 = I for some positive integer n0 ,
(ii) Un → I as n → ∞ in which the limit is taken in the strong operator topology.

Then B � A � U∗BU implies that B = A = U∗BU for any A, B ∈ Bh(H ).

Proof. Let A, B ∈ Bh(H ) such that B � A � U∗BU . There exist λ > 0 such that B + λ > 0. Put T = (B + λ)
1
2 U . By our

assumption we have

T T ∗ = B + λ � A + λ � U∗(B + λ)U = T ∗T . (2)

Thus T is a hyponormal operator. Obviously |T | = U∗(B + λ)
1
2 U = U∗T . Let T = V |T | be the polar decomposition of T .

Hence T = V U∗T . It follows from the invertibility of T that I = V U∗ , that is, U = V . Thus T satisfies the conditions of
Lemma 2.2. Therefore T turns out to be normal. Then (2) yields that B = A = U ∗BU . �
Corollary 2.5. Let U , V ∈ U(H ) be two commuting operators satisfying any one of the following conditions:

(i) Un0 = I and V n0 = I for some positive integer n0 ,
(ii) Un → I and V n → I as n → ∞,

where all limits are taken in the strong operator topology. If A, B ∈ Bh(H ) such that A � U∗BU and B � V ∗ AV , then A = U∗BU
and B = V ∗ AV .

Proof. By Lemma 2.3, the unitary operator U V satisfies the conditions of Theorem 2.4. �
The following lemmas are used in the proof of Theorem 2.8:

Lemma 2.6. (See [4, Theorem 3.2.3.1].) If 0 < A � B, then log(A) � log(B).

Lemma 2.7. (See [8, Theorem 2.6].) Let A, B ∈ B(H ) be two positive operators. Then B2 � A2 if and only if for each operator convex
function f on [0,∞) with f ′+(0) � 0 it holds that f (B) � f (A).

If f is an increasing operator convex function, then f ′+(0) � 0. The converse is also true. In fact f can be represented as

f (t) = f (0) + βt + γ t2 + ∫ ∞ λt2
dμ(λ), where γ � 0, β = f ′+(0) and μ is a positive measure on [0,∞); see [1, Chapter V].
0 λ+t
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Hence if f ′+(0), then f ′(t) = f ′+(0) + 2γ t + ∫ ∞
0

2λt+λt2

(λ+t)2 dμ(λ) � 0 for each t ∈ [0,∞). Now we are ready to state our next

result.

Theorem 2.8. Let A and B be two positive operators. Then A �u B if and only if f (g(A)r) �u f (g(B)r) for any increasing operator
convex function f , any operator monotone function g and any positive number r.

Proof. First we assume that 0 < A � U∗BU for some operator U ∈ U(H ). Then 0 < g(A) � g(U∗BU ) = U∗ g(B)U for
any operator monotone function g . Let r be a positive number. By Lemma 2.6 we have log(g(A)) � U ∗ log(g(B))U .
Hence log(g(A)2r) � log(U∗ g(B)2r U ). Thus by Kosaki’s result (1) there is an operator V ∈ U(H ) such that elog g(A)2r �
V ∗elog(U∗ g(B)2r U )V , that is g(A)2r � V ∗U∗ g(B)2r U V = (V ∗U∗ g(B)U V )2r . From which and Lemma 2.7 we conclude that

f
(

g(A)r) � f
((

V ∗U∗g(B)U V
)r) = V ∗U∗ f

(
g(B)r)U V (3)

for any increasing operator convex function f . This means that f (g(A)r) �u f (g(B)r) as desired.
For the general case note that the condition 0 � A � U∗BU ensures 0 < A + ε � U∗(B + ε)U for all ε > 0. Now the

general result is deduced from the paragraph above and a limit argument by letting ε tend to 0.
The reverse is clear by taking f (x) = x and r = 1. �
From Theorem 2.8 one can see that if A �u B , then there exists a sequence {Un}n∈N ⊂ U(H ) such that An � U∗

n BnUn .
An interesting problem is finding an operator U ∈ U(H ) such that An � U∗BnU for any positive integer n. If there exist
a sequence {Un}n∈N ⊂ U(H ) such that An � U∗

n BnUn and in the strong operator topology {Un} converges to an operator
U ∈ U(H ), then U is the desired unitary operator. To see this let ξ ∈ H , n ∈N and m > n. Then

〈
Anξ, ξ

〉
�

〈
U∗

m BnUmξ, ξ
〉 = 〈

BnUmξ, Umξ
〉
. (4)

Note that in the inequality of (4) we used α = m
n in the Löwner–Heinz inequality. By our assumption we have

〈BnUmξ, Umξ〉 → 〈BnUξ, Uξ〉 = 〈U∗BnUξ, ξ〉 as m → ∞, which by (4) implies that An � U∗BnU as requested.
The next theorem is related to the problem above. First we need to introduce our notation. For any two positive opera-

tors A and B and any positive integer n let Kn,A,B = {U ∈ U(H ): An � U∗BnU }. This set is compact in the case when H
is finite dimensional. Further, A � U∗BU for some unitary matrix U if λ j(A) � λ j(B) (1 � j � n), where λ1(·) � · · · � λn(·)
denotes eigenvalues arranged in the decreasing order with their multiplicities counted. Thus Kn,A,B can be nonempty. Our
next result reads as follows.

Theorem 2.9. Suppose that A and B are two positive operators such that Kn0,A,B is a nonempty set, which is either compact in the
strong operator topology or closed in the weak operator topology for some positive integer n0 . Then there exists an operator U ∈ U(H )

such that An � U∗BnU for every positive integer n.

Proof. First assume that Kn0,A,B is a nonempty strongly compact set for some positive integer n0. Without loss of generality
we may assume that n0 = 1. Let us set Kn instead of Kn,A,B for the sake of simplicity. Using the Löwner–Heinz inequality
one easily see that for any positive integer n

Kn+1 ⊆ Kn. (5)

We show that the sets Kn are strongly closed. To achieve this aim, fix n and let {Uα} be a net in Kn such that Uα → U in
which the limit is taken in the strong operator topology. Since Kn ⊆ K1 and K1 is assumed to be a strongly compact set,
we conclude that U ∈K1 which implies that U ∈ U(H ). Let ξ ∈ H . We have

〈
Anξ, ξ

〉
�

〈
U∗

α BnUαξ, ξ
〉 = 〈

BnUαξ, Uαξ
〉
. (6)

Since {Uα} converges strongly to U we obtain

〈
BnUαξ, Uαξ

〉 → 〈
BnUξ, Uξ

〉 = 〈
U∗BnUξ, ξ

〉
. (7)

Applying (6) and (7) we get An � U∗BnU . Thus U ∈ Kn . Hence Kn is closed. Now Theorem 2.8 shows that the sets Kn are
nonempty and (5) shows that

⋂
n∈F Kn =Kmax F �= φ for any arbitrary finite subset F of N. Hence

⋂
n∈NKn �= φ because the

Kn are closed subsets of K1 and K1 is compact.
Second, assume that Kn0 is a weakly closed nonempty set for some positive integer n0. Due to the unit ball of B(H ) is

weakly compact, we can repeat the first argument and reach to the desired consequence. �
Now we aim to prove our last result. We state some lemmas which are interesting on their own right.

Lemma 2.10. Let P ∈ B(H ) be an orthogonal projection and U ∈ U(H ) such that P � U ∗ P U . Then P = U∗ P U .
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Proof. Let ran(P ) = H1 and let I1 and I2 be the identity operators on H1 and H ⊥
1 , respectively. Therefore P = I1 ⊕ 0 and

U =
(

U1 U2
U3 U4

)
on H = H1 ⊕ H ⊥

1 . From P � U∗ P U we reach to the following inequality:

(
I1 0
0 0

)
�

(
U∗

1 U1 U∗
1 I1U2

U∗
2 I1U1 U∗

2 I1U2

)
, (8)

which implies that I1 � U∗
1 U1. Since U∗U = I hence

(
U∗

1 U1 + U∗
3 U3 U∗

1 U3 + U∗
3 U4

U∗
2 U1 + U∗

4 U3 U∗
2 U2 + U∗

4 U4

)
=

(
I1 0

0 I2

)
. (9)

From (8) and (9) we see that I1 = U∗
1 U1, U3 = 0 and U∗

2 U1 = 0. Thus U∗
2 = U∗

2 U1U∗
1 = 0 and this ensures that U∗ P U =(

U∗
1 U1 0
0 0

)
= P as desired. �

In the sequel we need to use the structure of the spectral family {Eλ(A)} corresponding to an operator A ∈ Bh(H );
cf. [5]. Recall that Eλ(A) can be defined as the strong operator limit ϕλ(A) of the sequence {ϕλ,n(A)}, where {ϕλ,n} is a
sequence of decreasing nonnegative continuous functions on the real line pointwise converging to the following function
defined on the spectrum sp(A) of A:

ϕλ(t) =
{

1 if −∞ < t � λ,

0 if λ < t < ∞.

Remark 2.11. It follows from Lemma 2.1 that if A is a positive operator and U ∈ U(H ), then Eλ(U∗ AU ) = U∗Eλ(A)U for
every λ ∈R.

Lemma 2.12. (See [10, Theorem 3].) Let A and B be positive operators in B(H ). Then An � Bn for n ∈N if and only if Eλ(A) � Eλ(B)

for every λ ∈ R.

Theorem 2.13. Let A be a positive operator and U ∈ U(H ) such that An � U∗ AnU for all n ∈ N. Then A = U∗ AU .

Proof. From Lemma 2.12 and Remark 2.11 we see Eλ(A) � Eλ(U∗ AU ) = U∗Eλ(A)U . Thus from Lemma 2.10 we have
Eλ(A) = U∗Eλ(A)U , which implies that U Eλ(A) = Eλ(A)U for every λ ∈ R. Hence U A = AU , or equivalently A = U∗ AU . �
Corollary 2.14. Suppose that A and B are two positive operators such that Kn0,A,B and Km0,B,A are either strongly compact or weakly
closed nonempty sets for some positive integers n0 and m0 , respectively. Then A and B are unitarily equivalent.

Proof. By Theorem 2.9 there exist operators U , V ∈ U(H ) such that An � U∗BnU and Bn � V ∗ An V for all n ∈ N. Thus
An � U∗BnU � U∗V ∗ An V U . Now the result is obtained from Theorem 2.13. �
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