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We show how linear Weingarten surfaces appear as special Ω-surfaces and give a charac-
terization of those linear Weingarten surfaces that allow a Weierstrass type representation.
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r é s u m é

Nous montrons que les surfaces de Weingarten linéaires peuvent être présentées comme
des surfaces Ω spéciales. Ensuite, nous discutons une caractérisation des surfaces de Wein-
garten linéaires de type Bryant.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We demonstrate how (spacelike) linear Weingarten surfaces in (Lorentzian) space forms appear as Ω- or Ω0-surfaces
with a (pair of) isothermic sphere congruence(s) that each take values in a linear sphere complex. One virtue of this Lie
geometric approach is that the rich isothermic transformation theory becomes available. For example, a “Lawson correspon-
dence” for linear Weingarten surfaces is immediately obtained from the Lie geometric deformation of Ω-surfaces [7]: the
fixed sphere complexes are constant conserved quantities of the enveloped isothermic sphere congruences, that is, they are
fixed by the respective Calapso transformations which provide the Lie geometric deformation of the Legendre lift of the
surface; consequently, this characterizing property is preserved by the deformation.

In the special case where one of the enveloped isothermic sphere congruences envelops a fixed sphere, hence giving rise
to a holomorphic map into a Riemann sphere, those linear Weingarten surfaces that allow a Weierstrass type representation
are obtained. This observation leads to simple proofs of recent results about Bryant type surfaces in hyperbolic space, cf. [6].

Besides the implications for smooth linear Weingarten surfaces, our approach also lends itself to discretization: a canon-
ical Lie geometric definition of discrete linear Weingarten surfaces as special Ω-nets will lead to a similar theory in the
discrete case.

2. Linear Weingarten surfaces in space forms

Fix a point sphere complex p ∈ R
4,2, |p|2 �= 0, and a space form vector q ⊥ p to consider a surface

f : M2 →Q3 := {
y ∈ L5

∣∣ (y,p) = 0, (y,q) = −1
}
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in the quadric Q3 of constant curvature κ = −|q|2, where L5 ⊂ R
4,2 denotes the light cone; its tangent plane congruence

t : M2 → P3 := {
y ∈ L5

∣∣ (y,p) = −1, (y,q) = 0
}

with (t, f) = 0 and (t,df) ≡ 0.

Away from umbilics we introduce curvature line coordinates (u, v), so that Rodrigues’ equations hold: 0 = tu + κ1fu =
tv + κ2fv . Now f is a linear Weingarten surface if there is a non-trivial (real) linear combination

0 = aK + 2bH + c, where H = κ1 + κ2

2
and K = κ1κ2

are the mean and (extrinsic) Gauss curvatures1 of f. Expressing the principal curvatures κi = (si ,q)
(si ,p)

in terms of the curvature
spheres si = t+ κif, the linear Weingarten condition reads

0 = k1W kt
2 with ki := (

(si,q), (si,p)
)

and W :=
(

a b
b c

)
.

Evidently, a change of basis of the plane 〈q,p〉 does not change the shape of the linear Weingarten condition: if (q̃, p̃) =
(q,p)B−1, B ∈ Gl(2), denotes another basis2 then

k̃i = ki B−1 and 0 = k̃1W̃ k̃t
2 with W̃ = BW Bt .

In particular, the parallel surfaces of a linear Weingarten surface in a space form (choosing B so that inner products are
preserved) are linear Weingarten where they immerse. Also, this observation provides a duality for linear Weingarten sur-
faces in H3 and in S2,1, cf. [6]: when |p|2 = −1 and |q|2 = 1 and the surface f : M2 → Q3 ∼= H3 has regular Gauss map
t : M2 → P3 ∼= S2,1 then, swapping the roles of the point sphere complex and the space form vector, t becomes a spacelike
linear Weingarten surface with mean and Gauss curvatures H

K and 1
K , respectively.

Linear Weingarten surfaces in space forms come in various flavors. If a = 0 then f is a surface of constant mean curvature,
hence, as an isothermic surface, an Ω-surface with its central sphere congruence as the second enveloped isothermic sphere
congruence, see [3]. If a �= 0 then the linear Weingarten condition can be rewritten as (aκ1 + b)(aκ2 + b) + (ac − b2) = 0; if
now the discriminant ac − b2 �= 0 then, depending on the sign of the discriminant, there is a real function ϕ so that

aκ1 + b =
√

b2 − ac tanhϕ,

aκ2 + b =
√

b2 − ac cothϕ;

}
or

{
aκ1 + b =

√
ac − b2 tanϕ,

aκ2 + b = −
√

ac − b2 cotϕ

hence, by the Codazzi equations, curvature line parameters can be adjusted so that

E = cosh2 ϕ, G = sinh2 ϕ or E = cos2 ϕ, G = sin2 ϕ.

Thus, with C = a2

ac−b2 , Calapso’s equation [2] C EG(κ1 − κ2)
2 = G ∓ E holds, showing that these linear Weingarten surfaces

are Guichard surfaces, hence Ω-surfaces, see [3]. In the second case, the pair of enveloped isothermic sphere congruences
becomes complex conjugate. Finally, if the discriminant ac − b2 = 0 then one of the principal curvatures is constant so that
f becomes a tube3 over a space curve. In this case the two isothermic sphere congruences coincide with the enveloped
1-parameter family of curvature spheres and the surface is an Ω0-surface.

3. Linear Weingarten surfaces as special Ω-surfaces

Using the aforementioned freedom of choice of basis for the plane 〈q,p〉 we shall give a unified, Lie geometric analysis
for the non-degenerate cases: by Sylvester’s inertia theorem, we may choose a basis (q1,q2) so that the linear Weingarten
condition reads, with ε ∈ {0,1, i},

0 = (s1,q1)(s2,q1) − ε2(s1,q2)(s2,q2).

If ε �= 0, that is, ac − b2 �= 0, we may rescale the curvature spheres so that, with a suitable function ϕ , (s1,q2) =
(s2,q1) = coshεϕ and (s1,q1) = ε2(s2,q2) = 1

ε sinhεϕ. As the si are curvature spheres, that is, s1u, s2v ∈ 〈s1, s2〉, we infer
that s1u = ϕu s2 and s2v = ε2ϕv s1. Hence s±

uv = ε2(ϕuϕv ± εϕuv)s±, where s± := s1 ± εs2, so that s± define a (if ε = i
complex conjugate) pair of enveloped isothermic sphere congruences for the Legendre immersion f = 〈f, t〉, which is there-
fore an Ω-surface, see [3] and [4]. Moreover, the isothermic sphere congruences each take values in a fixed linear sphere
complex4 as (s±,q±) ≡ 0 for q± := q1 ∓ εq2.

1 In contrast to some authors we do not equip the Gauss curvature with a sign in the case |p|2 > 0 of a spacelike surface in a Lorentzian space form. Our
tangent plane congruence t yields a constant length normal field in the space form; the normalization |p|2 = ∓1 yields the usual principal curvatures κi ,
i.e., with respect to a normalized Gauss map.

2 Note that, as we exclude umbilics, k̃1 and k̃2 are linearly independent.
3 Possibly with infinite radius.
4 That is, q± are constant conserved quantities for s±: (d + λτ±)q± = 0 for all λ ∈ R, where d + λτ± defines the isothermic loop of (flat) connections

of s± , cf. [1].
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Conversely, suppose that f = 〈s+, s−〉 is an Ω-surface, given in terms of a (possibly complex conjugate) pair of isothermic
sphere congruences s± , each of which takes values in a linear sphere complex5 q± . As the s± separate the curvature
spheres si of f harmonically, we may assume that their Moutard lifts are aligned to reflect across the Lie-cyclides of f , that
is, for suitable lifts of the curvature spheres6

s± = s1 ± εs2, hence
(
s1,q+)(

s2,q−) + (
s1,q−)(

s2,q+) = 0,

showing that f projects to a non-tubular linear Weingarten surface, ac − b2 �= 0, in any space form given by a choice of
point sphere complex and space form vector p,q ∈ 〈q+,q−〉.

Thus we have proved: Linear Weingarten surfaces with ac −b2 �= 0 in space forms are those Ω-surfaces f = 〈s+, s−〉 enveloping
a (possibly complex conjugate) pair of isothermic sphere congruence s± , each of which takes values in a linear sphere complex q± . The
plane spanned by q± is the plane of the point sphere complex7 p and the space form vector q.

It remains to investigate the degenerate case ε = 0, that is, ac − b2 = 0, of a tube over a curve: in this case we may
assume (s2,q1) ≡ 0 and (s1,q1) �= 0; hence s := s2 can be normalized so that sv ≡ 0, showing that s is an isothermic sphere
congruence that takes values in the linear sphere complex q1. Conversely, if f = 〈s1, s2〉 is a Legendre immersion so that the
curvature sphere congruence s2 is isothermic, s2uv ‖ s2, and maps into a fixed linear sphere complex q then, for any choice
of a complementary linear sphere complex q2,

(s1,q)(s2,q) − 0(s1,q2)(s2,q2) = 0,

showing that f projects to a tube in a suitable space form. Tubes over curves in space forms, i.e., linear Weingarten surfaces with
ac − b2 = 0, are those Ω0-surfaces whose isothermic curvature sphere congruence takes values in a linear sphere complex.

In contrast to the non-degenerate case, the space form projection is far more flexible in the degenerate case: for example,
if |q|2 < 0 then p := q is the point sphere complex for a (definite) conformal subgeometry of Lie geometry, where f projects
to the curve f
 s2; then choosing a space form vector q⊥ p specifies a space form subgeometry of this conformal geometry
and subsequent parallel transformations in this space form yield tubes around the original curve.

4. Weierstrass representations

If one of the sphere complexes q± obtained from a (non-degenerate) linear Weingarten surface, say q+ , is given by
a (real) sphere, |q+|2 = 0, then the second envelope of s+ yields a holomorphic map.8 We shall see that suitable space
form projections f = − 1

�
(s+ ∧ s−)p and t = 1

�
(s+ ∧ s−)q with s± = s1 ± s2 and � := ((s+ ∧ s−)p,q) = (s+,p)(s−,q) −

(s−,p)(s+,q) �= 0 yield (parallel surfaces of) surfaces that are known to allow a Weierstrass representation.
In the case q− ⊥ q+ of a degenerate metric on 〈q+,q−〉 we choose9 q := q+ and p := q− to find

k1 = (
(s1,q), (s1,p)

) = 1

2

((
s−,q+)

,
(
s+,q−))

and k2 = 1

2

(−(
s−,q+)

,
(
s+,q−))

.

Hence k1W kt
2 = 0 for W = ( 0 1

1 0

)
, showing that f is a minimal surface in either Euclidean space or in Minkowski space,

depending on the sign of |p|2; in both cases a Weierstrass representation is known, see [5].
In the non-degenerate case (q+,q−) �= 0 we may assume that (q+,q−) = − 1

2 and set μ := |q−|2. Then q := q−+(μ−1)q+
and p := q− + (μ + 1)q+ define a space form projection f : M2 → H3 into hyperbolic space with

k1 = 1

2

((
s+,q−) + (μ − 1)

(
s−,q+)

,
(
s+,q−) + (μ + 1)

(
s−,q+))

,

k2 = 1

2

((
s+,q−) − (μ − 1)

(
s−,q+)

,
(
s+,q−) − (μ + 1)

(
s−,q+));

hence k1W kt
2 = 0 with W = (μ+1 −μ

−μ μ−1

)
, showing that f is a linear Weingarten surface of Bryant type, cf. [6]. These are the

linear Weingarten surfaces in hyperbolic space known to allow a Weierstrass representation; the flat front case discussed
in [1] is obtained at μ = 0. The non-degenerate linear Weingarten surfaces one of whose enveloped isothermic sphere congruences
envelops a fixed sphere allow a Weierstrass type representation.

In [6] the authors observe that non-degenerate linear Weingarten surfaces of Bryant type come in three types: flat fronts
and surfaces that are parallel to either a cmc-1 surface (μ = −1) or an hmc-1 surface (μ = 1). In our setup this is reflected

5 The q± are linearly independent: the assumption q+ = q− would lead to f being totally umbilic.
6 In the complex conjugate case we may, without loss of generality, assume that q± = q1 ∓ iq2 are complex conjugate as well: the linear Weingarten

condition then becomes real in terms of q1 and q2.
7 In the case of a spacelike point sphere complex, |p|2 > 0, a spacelike linear Weingarten surface in a Lorentzian space form is obtained. We need to

exclude the case of 〈q+,q−〉 being a null 2-plane though.
8 Holomorphic with respect to the conformal structure induced by the isothermic sphere congruences s±: for the Bryant type surfaces below this is given

by I − 2II + III or, equivalently, by (μ − 1)2I − 2(μ − 1)(μ + 1)II + (μ + 1)2III.
9 We need to exclude the case of a totally degenerate metric, where 〈q+,q−〉 is a null 2-plane; using q+ to project to Laguerre geometry will shed light

on this case as well, cf. [8].
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by the remaining scaling freedom of q− , a rescaling providing a parallel transformation in H3. The aforementioned duality
of linear Weingarten surfaces in H3 and S2,1 exchanges cmc-1 surfaces and hmc-1 surfaces while flatness of the induced
metric is preserved.
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