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In an earlier work made by the first author with J. Turi (Degenerate Dirichlet Problems
Related to the Invariant Measure of Elasto-Plastic Oscillators, AMO, 2008), the solution
of a stochastic variational inequality modeling an elasto-perfectly-plastic oscillator has
been studied. The existence and uniqueness of an invariant measure have been proven.
Nonlocal problems have been introduced in this context. In this work, we present a new
characterization of the invariant measure. The key finding is the connection between
nonlocal PDEs and local PDEs which can be interpreted with short cycles of the Markov
process solution of the stochastic variational inequality.
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r é s u m é

Dans un travail précédent du premier auteur en collaboration avec Janos Turi (Degenerate
Dirichlet Problems Related to the Invariant Measure of Elasto-Plastic Oscillators, AMO,
2008), la solution d’une inéquation variationnelle stochastique modélisant un oscillateur
élastique-parfaitement-plastique a été étudiée. L’existence et l’unicité d’une mesure
invariante ont été prouvées. Des problèmes nonlocaux ont été introduits dans ce contexte.
Le point clé est le lien entre des EDPs nonlocales et des EDPs locales qui peuvent être
interprétées comme les cycles courts du processus de Markov solution de l’inéquation
variationnelle stochastique.
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A. Bensoussan et J. Turi ont montré que la relation entre la vitesse et la composante élastique de l’oscillateur élastique-
parfaitement-plastique est un processus de Markov ergodique qui satisfait une inéquation variationnelle stochastique (voir
(1)). La solution admet une mesure invariante caractérisée par dualité à l’aide d’une équation aux dérivées partielles avec
des conditions de bord non-locales (voir (2)). Dans ce travail, une nouvelle preuve de la théorie ergodique est présentée ainsi
qu’une nouvelle caractérisation de l’unique distribution invariante. Dans ce contexte, nous déduisons des nouvelles formules
reliant des équations aux dérivées partielles avec des conditions de bord non-locales à des problèmes locaux (voir (7)).

1. Introduction

A mathematical framework of stochastic variational inequalities (SVI) modeling an elasto-perfectly-plastic (EPP) oscillator
with noise has been introduced by A. Bensoussan and J. Turi in [2]. Although SVI have been already studied in [1] to
represent reflection–diffusion processes in convex sets, no connection with random vibration had been made so far. The
inequality governs the relationship between the velocity y(t) and the elastic deformation z(t):

dy(t) = −(
c0 y(t) + kz(t)

)
dt + dw(t),

(
dz(t) − y(t)dt

)(
φ − z(t)

)
� 0, ∀|φ|� Y ,

∣∣z(t)∣∣ � Y . (1)

Here c0 > 0 is the viscous damping coefficient, k > 0 the stiffness, w is a Wiener process and Y is an elasto-plastic bound.
Let us introduce some notations.

Notation 1. D := R× (−Y ,+Y ), D+ := (0,∞) × {Y }, D− := (−∞,0) × {−Y }, and the differential operators Aζ := − 1
2 ζyy +

(c0 y + kz)ζy − yζz , B+ζ := − 1
2 ζyy + (c0 y + kY )ζy , B−ζ := − 1

2 ζyy + (c0 y − kY )ζy , where ζ is a smooth function on D .

In [2], it has been shown that the probability distribution of (y(t), z(t)) converges to an asymptotic probability measure
on D ∪ D+ ∪ D− namely ν . Moreover, ν is the unique invariant distribution of (y(t), z(t)). In addition, from [3] we know
also that there exists a unique solution uλ to the following partial differential equation (PDE):

λuλ + Auλ = f in D, λuλ + B+uλ = f in D+, λuλ + B−uλ = f in D− (2)

with the nonlocal boundary conditions given by the fact that uλ(y, Y ) and uλ(y,−Y ) are continuous, where λ > 0 and f is
a bounded measurable function. The function uλ satisfies ‖uλ‖∞ � ‖ f ‖∞

λ
, uλ is continuous and for all (y, z) ∈ D̄ , we have

limλ→0 λuλ(y, z) = ν( f ). We use the notation uλ(y, z; f ).
Now, we introduce short cycles to provide a new proof of the ergodic theory for (1). In this context, we derive new

formulas linking PDEs with nonlocal boundary conditions to local problems.

1.1. Short cycles

Let λ > 0, consider vλ(y, z) the solution of (2) with the local boundary conditions vλ(0+, Y ) = 0 and vλ(0−,−Y ) = 0.
Also, if f is symmetric (resp. antisymmetric) then vλ is symmetric (resp. antisymmetric). We use the notation vλ(y, z; f ).

Note that similarly to what was done for uλ in [3], the existence and uniqueness of vλ can be obtained in an appropriate
weighted Sobolev space. In addition, vλ is not continuous at (y, z) = (0,±Y ). This is a direct consequence of the degeneracy
of the operator. Indeed no boundary conditions are specified on (−∞,0)×{Y } and (0,∞)×{−Y }. The value of the solution
on these boundaries are nonlocal and follow from the solution of the equations in the full domain. Therefore there is
no reason why vλ(0−, Y ) = 0 and vλ(0+,−Y ) = 0. Besides, in this case vλ would be also solution of problem (2) which is
satisfied by the function uλ . The latter characterizes the law related to the stochastic process solving (1). From a probabilistic
point of view, that would mean that the solution is the process (y(t), z(t)) stopped at the first instant where (y(t), z(t)) =
(0,±Y ). This is not possible because of the Wiener process.

As λ → 0, vλ → v with

Av = f in D, B+v = f in D+, B−v = f in D− (P v )

with the local boundary conditions v(0+, Y ) = 0 and v(0−,−Y ) = 0. We use the notation v(y, z; f ). We call v(y, z; f )
a short cycle. Existence and uniqueness of a solution to (P v ) are discussed in the next section.

Next, we introduce next π+(y, z) and π−(y, z) such that

Aπ+ = 0 in D, π+ = 1 in D+, π+ = 0 in D− (3)

and

Aπ− = 0 in D, π− = 0 in D+, π− = 1 in D−. (4)

Note that π+ +π− = 1. The existence of solutions to (3) and (4) between 0 and 1 can be deduced by the limit as λ goes to
0 of the functions π±

λ which are presented in the proof of the main result. A new formulation of the invariant distribution
is given by the following theorem:
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Theorem 1.1 (New formulation of the invariant distribution ν). Let f be a bounded measurable function on D̄, we have the following
analytical characterization of the invariant distribution:

ν( f ) = v(0−, Y ; f ) + v(0+,−Y ; f )

2v(0+, Y ;1)
.

Denote

νλ( f ) := vλ(0−, Y ; f ) + vλ(0+,−Y ; f )

2vλ(0−, Y ;1)
.

As λ → 0,

uλ(y, z; f ) − νλ( f )

λ
→ u(y, z; f ), νλ( f ) → ν( f ) (5)

where u satisfies

Au = f − ν( f ) in D, B+u = f − ν( f ) in D+, B−u = f − ν( f ) in D− (6)

with the nonlocal boundary conditions given by the fact that

u(y, Y ) and u(y,−Y ) are continuous.

Then, we obtain also the representation formula

u(y, z; f ) = v(y, z; f ) − ν( f )v(y, z;1) + π+(y, z) − π−(y, z)

4π−(0−, Y )

(
v
(
0−, Y ; f

) − v
(
0+,−Y ; f

))
. (7)

2. Analysis of the short cycles

We describe the solution of (P v ). We can write v(y, z; f ) = ve(y, z; f ) + v+(y, z; f ) + v−(y, z; f ) with ve, v+, v− satis-
fying

Ave = f (y, z) in D, ve = 0 in D+, ve = 0 in D−, (8)

Av+ = 0 in D, v+(y, Y ) = ϕ+(y; f ) in D+, v+ = 0 in D−, (9)

and

Av− = 0 in D, v− = 0 in D+, v−(y,−Y ) = ϕ−(y; f ) in D−, (10)

where ϕ+(y; f ) and ϕ−(y; f ) are defined by

−1

2
ϕ+

yy + (c0 y + kY )ϕ+
y = f (y, Y ), y > 0, ϕ+(

0+; f
) = 0 (11)

and

−1

2
ϕ−

yy + (c0 y − kY )ϕ−
y = f (y,−Y ), y < 0, ϕ−(

0−; f
) = 0. (12)

We check easily the formula

ϕ+(y; f ) = 2

∞∫
0

dξ exp
(−(

c0ξ
2 + 2kY ξ

)) ξ+y∫
ξ

f (ζ ; Y )exp
(−2c0ξ(ζ − ξ)

)
dζ,

if y � 0 and also

ϕ−(y; f ) = 2

∞∫
0

dξ exp
(−(

c0ξ
2 − 2kY ξ

)) −ξ∫
y−ξ

f (ζ ;−Y )exp
(−2c0ξ(ζ − ξ)

)
dζ,

if y � 0.

2.1. Solution to problem (8)

The proof will be based on solving a sequence of Interior–Exterior Dirichlet problems and a fixed point argument. Thus,
we need to state the two following lemmas as preliminary results. It is sufficient to consider f = 1, with no loss of gener-
ality.
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2.1.1. Interior Dirichlet problem
We begin with the interior problem, let D1 := (− ȳ1, ȳ1) × (−Y , Y ), D+

1 := [0, ȳ1) × {Y }, D−
1 := (− ȳ1,0] × {−Y }. Let us

consider the space C+
1 of continuous functions on [−Y , Y ] which are 0 on Y and the space C−

1 of continuous functions on
[−Y , Y ] which are 0 on −Y . Let ϕ+ ∈ C+

1 and ϕ− ∈ C−
1 . We consider the problem

−1

2
ζyy + (c0 y + kz)ζy − yζz = 1 in D1, ζ(y, Y ) = 0 in D+

1 , ζ(y,−Y ) = 0 in D−
1 (13)

with ζ( ȳ1, z) = ϕ+(z) and ζ(− ȳ1, z) = ϕ−(z), if −Y < z < Y .

Lemma 2.1. There exists a unique bounded solution to Eq. (13).

Proof. It is sufficient to prove an a priori bound. Indeed, that leads to some priori estimates on the solution and then a
regularization method shows the existence. For that we can assume ϕ+,ϕ− = 0. Consider λ > 0 and the function θ(y, z) =
exp(λc0(y2 + kz2)) then − 1

2 θyy + (c0 y + kz)θy − yθz = θ(−λc0 + 2λc2
0 y2(1 − λ)). Set next H := −(θ + ζ ) then

−1

2
H yy + (c0 y + kz)H y − yHz = −1 + θ

(
λc0 − 2λc2

0 y2(1 − λ)
)
. (14)

If we pick λ > max(1, 1
c0

) the right-hand side of (14) is positive. Therefore the minimum of H can occur only on the

boundary y = ȳ1 and z = Y with y > 0 or z = −Y with y < 0. It follows that H(y, z) � −exp(λc0( ȳ2
1 + Y 2)) and thus also

0 � ζ � exp(λc0( ȳ2
1 + Y 2)). �

2.1.2. Exterior Dirichlet problems
Now, we proceed by considering two exterior Dirichlet problems. Let 0 < ȳ < ȳ1, we define D ȳ<y := {y > ȳ, −Y < z < Y },

D+
ȳ<y := {y > ȳ, z = Y } and D y<− ȳ := {y < − ȳ, −Y < z < Y }, D−

y<− ȳ := {y < − ȳ, z = −Y } and consider

−1

2
η+

yy + (c0 y + kz)η+
y − yη+

z = 1 in D ȳ<y, η+(y, Y ) = 0 in D+
ȳ<y (15)

with the condition η+( ȳ, z) = ζ( ȳ, z) if −Y < z < Y , and

−1

2
η−

yy + (c0 y + kz)η−
y − yη−

z = 1 in D y<− ȳ, η−(y,−Y ) = 0 in D−
y<− ȳ (16)

with the condition η−(− ȳ, z) = ζ(− ȳ, z), if −Y < z < Y . We use the same notation η(y, z) for the two problems (15), (16)
for the convenience of the reader. We have

Lemma 2.2. For any ȳ > 0 there exists a unique bounded solution of (15), (16).

Proof. It is sufficient to prove the bound, we claim that ‖ζ‖∞ � η(y, z) � ‖ζ‖∞ + Y −z
ȳ , for y > ȳ and ‖ζ‖∞ � η(y, z) �

‖ζ‖∞ + Y +z
ȳ , for y < − ȳ. Consider for instance ρ(z) = ‖ζ‖∞ + Y −z

ȳ for y > ȳ, −Y < z < Y then − 1
2 ρyy + ρy(c0 y + kz) −

yρz = y
ȳ > 1, ρ( ȳ, z) = ‖ζ‖L∞ + Y −z

ȳ > ζ( ȳ, z), ρ( ȳ, z) = ‖ζ‖L∞ > 0. So clearly η(y, z) � ρ(z). So in all cases we can assert

that ‖η‖∞ � ‖ζ‖∞ + 2Y
ȳ . �

2.1.3. Solution to problem (8)

Proposition 2.1. There exists a unique bounded solution to problem (8).

Proof. Uniqueness comes from maximum principle. Setting Φ = (ϕ+(z),ϕ−(z)) and using the notation Φ( ȳ1, z) = ϕ+(z),
Φ(− ȳ1, z) = ϕ−(z), we can next define Γ Φ( ȳ1, z) = η( ȳ1, z) and Γ Φ(− ȳ1, z) = η(− ȳ1, z). We thus have defined a map Γ

from C+
1 , C−

1 into itself. If Γ has a fixed point, then it is clear that the function

ve(y, z) =
{

ζ(y, z), − ȳ1 < y < ȳ1,

η(y, z), y > ȳ, y < − ȳ

is a solution of (8) since ζ = η for ȳ < y < ȳ1, z ∈ (−Y , Y ) and for − ȳ1 < y < − ȳ, z ∈ (−Y , Y ) and the required regularity
is available at boundary points ȳ, ȳ1,− ȳ,− ȳ1. The result will follow from the property: Γ is a contraction mapping. This
property will be an easy consequence of the following result. Consider the exterior problem

−1

2
ψyy + ψy(c0 y + kz) − yψz = 0 in D ȳ<y, ψ(y, Y ) = 0 in D+

ȳ<y, (17)

where ψ( ȳ, z) = 1 if −Y < z < Y , then sup−Y <z<Y ψ( ȳ1, z)� ρ < 1.
Indeed if sup−Y <z<Y ψ( ȳ1, z) = 1, then the maximum is attained on the line y = ȳ1, and this is impossible because it

cannot be at z = Y , nor at z = −Y , nor at the interior, by maximum principle considerations. �
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2.2. Solution to problems (9) and (10)

We now consider the function ϕ+ and ϕ− solution of (11) and (12). Note that if y < 0, we have ϕ−(y;1) = ϕ+(−y;1).
So it is sufficient to consider (11) and we easily see that

ϕ+(y;1) =
∞∫

0

exp
(−(

c0ξ
2 + 2kY ξ

))1 − exp(−2c0 yξ)

2c0ξ
dξ, if y > 0

and we have ϕ+(y;1) � 1
c0

log(
c0 y+kY

kY ), if y > 0. We next want to solve the problem (9). We proceed as follow. We extend

ϕ+ for y < 0, by a function which is C2 on R and with compact support on y < 0. It is convenient to call ϕ(y) the C2

function on R, with compact support for y < 0 and ϕ(y) = ϕ+(y;1) for y > 0. We set w+(y, z) = v+(y, z) − ϕ(y) then we
obtain the problem

Aw+ = g in D, w+(y, Y ) = 0 in D+, w+(y,−Y ) = −ϕ(y) in D− (18)

with g(y, z) = −(− 1
2 ϕyy + (c0 y + kz)ϕy).

But, g(y, z) = 1{y>0}(−1+k(Y − z)ϕy(y))+1{y<0}(−(− 1
2 ϕyy + (c0 y +kz)ϕy)) and thus, taking into account the definition

of ϕ when y < 0, we can assert that g(y, z) is a bounded function. Again, from the definition of ϕ(y) when y < 0, we obtain
that on the boundary, w+ is bounded. It follows from what was done for problem (8) that (18) has a unique solution. So
we can state the following proposition:

Proposition 2.2. There exists a unique solution to (9) of the form v+(y, z) = ϕ+(y)1{y>0} + ṽ+(y, z) where ṽ+(y, z) is bounded.
Similarly, there exists a unique solution to (10) of the form v−(y, z) = ϕ−(y)1{y<0} + ṽ−(y, z) where ṽ−(y, z) is bounded.

Proof. We just define ϕ(y) extension of ϕ+(y) for y < 0 as explained before and consider w+(y, z) solution of (18). We
know that w+(y, z) is bounded and we have v+(y, z) = ϕ(y) + w+(y, z) = ϕ+(y)1{y>0} + ϕ(y)1{y<0} + w+(y, z) which is
of the form (9) with ṽ+(y, z) = ϕ(y)1{y<0} + w+(y, z). �
2.3. The complete problem (P v )

Finally, we consider the complete problem (P v ), we can state

Theorem 2.1. There exists a unique solution of (P v ) of the form v(y, z; f ) = ϕ+(y; f )1{y>0} + ϕ−(y; f )1{y<0} + w̃(y, z) where
w̃(y, z) is a bounded function which can be written as w̃ = ve + w+ + w− .

Proof. We just collect the results of Propositions 2.1 and 2.2. �
3. Ergodic theorem

Proof of Theorem 1.1. We first prove the result when f is symmetric. In that case, we can write

uλ(y, z; f ) = vλ(y, z; f ) + vλ(0−, Y ; f )

vλ(0−, Y ;1)

(
1

λ
− vλ(y, z;1)

)
. (19)

Indeed, we know that uλ(y, z; f ) and vλ(y, z; f ) are symmetric. Setting ũλ(y, z; f ) = uλ(y, z; f ) − vλ(y, z; f ), we obtain

λũλ + Aũλ = 0 in D, λũλ + B+ũλ = 0 in D+, λũλ + B−ũλ = 0 in D− (20)

with the boundary conditions ũλ(0+, Y ; f ) − ũλ(0−, Y ; f ) = vλ(0−, Y ; f ) and ũλ(0+,−Y ; f ) − ũλ(0−,−Y ; f ) =
−vλ(0+,−Y ; f ). This last condition is automatically satisfied, thanks to the previous one and the symmetry. The func-
tion 1

λ
− vλ(y, z;1) satisfies the three partial differential equations on D , D+ and D− . So, ũλ = C( 1

λ
− vλ(y, z;1)) and

writing the first boundary condition, we have

ũλ

(
0+, Y ; f

) − ũλ

(
0−, Y ; f

) = −C
(

vλ

(
0+, Y ;1

) − vλ

(
0−, Y ;1

)) = C vλ

(
0−, Y ;1

)
.

Hence,

C = vλ(0−, Y ; f )

vλ(0−, Y ;1)

and formula (19) has been obtained. Now, we have νλ( f ) → ν( f ) = v(0−,Y ; f )
− , as λ → 0. If we define
v(0 ,Y ;1)
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u�
λ(y, z; f ) = uλ(y, z; f ) − νλ( f )

λ
= vλ(y, z; f ) − νλ( f )vλ(y, z;1).

The function

u�
λ(y, z; f ) → v(y, z; f ) − ν( f )v(y, z;1) = v

(
y, z; f − ν( f )

)
, λ → 0.

Also from its definition the function u�
λ(y, Y ; f ) and u�

λ(y,−Y ; f ) are continuous. From the choice of ν( f ) the function
v(y, Y ; f − ν( f )) is continuous. Now, since f − ν( f ) is symmetric

v
(
0+,−Y ; f − ν( f )

) − v
(
0−,−Y ; f − ν( f )

) = v
(
0+, Y ; f − ν( f )

) − v
(
0−, Y ; f − ν( f )

) = 0.

So the result is proven when f is symmetric. We now consider the situation when f is antisymmetric. We know that
uλ(y, z; f ) is antisymmetric. Similarly vλ(y, z; f ) is antisymmetric. Consider π−

λ and π+
λ defined by

λπ+
λ + Aπ+

λ = 0 in D, λπ+
λ + B+π+

λ = 0 in D+, π+
λ = 0 in D− (21)

with the boundary condition π+
λ (0+, Y ) = 1 and

λπ−
λ + Aπ−

λ = 0 in D, π−
λ = 0 in D+, λπ−

λ + B+π−
λ = 0 in D− (22)

with the boundary condition π−
λ (0−,−Y ) = 1. We have π−

λ (y, z) = π−
λ (−y,−z), we then state the formula

uλ(y, z; f ) = vλ(y, z; f ) − (π+
λ (y, z) − π−

λ (y, z))vλ(0+,−Y ; f )

1 − π+
λ (0−, Y ) + π+

λ (0+,−Y )
.

So we see that uλ(y, z; f ) converges as λ → 0, without substracting a number νλ( f )
λ

. The function uλ(y, z; f ) converges
pointwise to

u(y, z; f ) = v(y, z; f ) − (π+(y, z) − π−(y, z))v(0+,−Y ; f )

2π−(0−, Y )
.

So when f is antisymmetric, the results (5)–(6) hold with νλ( f ) = 0 and ν( f ) = 0. For the general case, we can write
f = fsym + fasym with

fsym(y, z) = f (y, z) + f (−y,−z)

2
, fasym(y, z) = f (y, z) − f (−y,−z)

2
.

We have ν( fsym) = v(0−,Y ; fsym)

v(0−,Y ;1)
and thus ν( fsym) = v(0−,Y ; f )+v(0+,−Y ; f )

2v(0+,−Y ;1)
. Since ν( fasym) = 0, we deduce ν( f ) = ν( fsym) =

v(0−,Y ; f )+v(0+,−Y ; f )
2v(0+,−Y ;1)

. We obtain also the representation formula

u(y, z; f ) = v(y, z; f ) − ν( f )v(y, z;1) + π+(y, z) − π−(y, z)

4π−(0−, Y )

(
v
(
0−, Y ; f

) − v
(
0+,−Y ; f

))

and the result is obtained. �
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