

#### Contents lists available at SciVerse ScienceDirect

# C. R. Acad. Sci. Paris, Ser. I



www.sciencedirect.com

# Analytic Geometry Semistability of invariant bundles over $G/\Gamma$ , II

Semi-stabilité des fibrés vectoriels invariants sur  $G/\Gamma$ , II

# Indranil Biswas

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

#### ARTICLE INFO

Article history: Received 28 November 2011 Accepted 28 February 2012 Available online 16 March 2012

Presented by Jean-Pierre Demailly

#### ABSTRACT

Let *G* be a connected complex Lie group, and let  $\Gamma$  be a cocompact discrete subgroup of *G*. We prove that any invariant principal bundle on  $G/\Gamma$  is semistable with respect to any Hermitian structure on  $G/\Gamma$  given by some right-translation invariant Hermitian structure on *G*.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Soit *G* un groupe de Lie connexe sur  $\mathbb{C}$ , et soit  $\Gamma \subset G$  un sous-groupe discret cocompact. Nous démontrons que tout fibré vectoriel invariant sur  $G/\Gamma$  est semi-stable par rapport à toute structure hermitienne sur  $G/\Gamma$  provenant d'une structure hermitienne sur *G* invariante par translations à droite.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

### 1. Introduction

Let *G* be a complex Lie group, and let  $\Gamma \subset G$  be a cocompact discrete subgroup. A holomorphic vector bundle *E* over  $G/\Gamma$  is called invariant if for every  $g \in G$ , the pullback of *E* by the automorphism of  $G/\Gamma$  defined by  $z \mapsto gz$  is holomorphically isomorphic to *E*. In [1] we proved the following under the assumption that *G* is a complex reductive affine algebraic group:

- (1) Any Hermitian form  $\tilde{\omega}$  on  $G/\Gamma$  given by right-translations of a *K*-invariant Hermitian structure on Lie(*G*), where *K* is a maximal compact subgroup of *G*, satisfies the identity  $d\tilde{\omega}^{n-1} = 0$ , where  $n = \dim_{\mathbb{C}} G$ .
- (2) The degree of any invariant vector bundle over  $G/\Gamma$  is zero.
- (3) Any invariant vector bundle over  $G/\Gamma$  is semistable with respect to the above Hermitian form  $\tilde{\omega}$ .

Our aim here is to address the general case.

Take any arbitrary pair  $(G, \Gamma)$ , where  $\Gamma$  is a cocompact discrete subgroup of a complex connected Lie group *G*. Fix a Hermitian form  $\omega_0$  on Lie(*G*). Let  $\tilde{\omega}$  be the Hermitian form on  $G/\Gamma$  defined by the right-translations of  $\omega_0$ .

We prove the following (see Corollary 2.2, Theorem 3.1 and Lemma 3.2):

# Theorem 1.1.

(1)  $d\widetilde{\omega}^{n-1} = 0$ , where  $n = \dim_{\mathbb{C}} G$ .

(2) The degree of any invariant vector bundle over  $G/\Gamma$  is zero.

(3) Any invariant vector bundle over  $G/\Gamma$  is semistable with respect to the above Hermitian form  $\tilde{\omega}$ .

1631-073X/\$ – see front matter © 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2012.02.011

E-mail address: indranil@math.tifr.res.in.

Once the first statement in Theorem 1.1 is proved, the proofs of the other two statements are identical to those for the special case of reductive groups dealt in [1].

#### 2. Invariant forms and coclosedness

Let *G* be a connected complex Lie group. The Lie algebra of *G* will be denoted by  $\mathfrak{g}$ . For any  $g \in G$ , let  $L_g$  (respectively,  $R_g$ ) be the left (respectively, right) translation of G by g defined by

 $x \mapsto gx$  (respectively,  $x \mapsto xg$ ).

Fix a Hermitian inner product  $H_0$  on g. Let H be the right-translation invariant Hermitian structure on G obtained by translating  $H_0$ . So H is the unique Hermitian structure on G such that  $R^*_{\sigma}H = H$  for all  $g \in G$ , and  $H_e = H_0$ , where  $e \in G$  is the identity element. This *H* is clearly  $C^{\infty}$ .

Let  $\omega$  be the (1, 1)-form on *G* associated to *H*.

**Proposition 2.1.** Assume that there is a discrete subgroup  $\Gamma \subset G$  with the property that the quotient  $G/\Gamma$  is compact. Then

 $d^*\omega = 0.$ 

where d\* is the adjoint of the de Rham differential d with respect to H.

**Proof.** We will first show that G is unimodular, meaning left-translation invariant Haar measures on G coincide with the right-translation invariant Haar measures.

From Lemma 1.5 of [3, p. 20] it can be deduced that G is unimodular. The details of the argument are as follows: Since  $\Gamma$  in the statement of the proposition is discrete, the modular function  $\Delta_{\Gamma}$  on  $\Gamma$  (see [3, p. 17] for its definition) is the constant function 1. Hence the function  $(\Delta_G|_{\Gamma})/\Delta_{\Gamma}$  on  $\Gamma$  coincides with  $\Delta_G$ , where  $\Delta_G$  is the modular function on G(defined in [3, p. 17]). Therefore, from the criterion in Lemma 1.4 of [3, p. 18] it follows immediately that measure on  $G/\Gamma$ given by a right-translation invariant Haar measure on G is semi-invariant. Now Lemma 1.5 of [3, p. 20] says that G is unimodular.

The tangent bundle of the real manifold *G* will be denoted by  $T^{\mathbb{R}}G$ . Let

$$J: T^{\mathbb{R}}G \to T^{\mathbb{R}}G$$

be the almost complex structure of the complex manifold G. The Levi-Civita connection on  $T^{\mathbb{R}}G$  for the Hermitian structure *H* will be denoted by  $\nabla^{H}$ . For any  $v \in \mathfrak{g}$ , let  $\tilde{v}$  be the unique right-translation invariant vector field on *G* (section of  $T^{\mathbb{R}}G$ ) such that

$$\widetilde{v}(e) = v.$$

For any  $v \in \mathfrak{g}$ , let

$$\mathrm{ad}_{\nu}:\mathfrak{g}\to\mathfrak{g}$$

be the derivation defined by  $x \mapsto [x, v]$ .

With the above notation, it is straightforward to check that

$$\left(\nabla_{\widetilde{u}}^{H}\omega\right)(\widetilde{v},\widetilde{w}) = H\left(\operatorname{ad}_{J(w)}(v),\widetilde{u}\right) \tag{1}$$

for all  $u, v, w \in \mathfrak{g}$ .

Let n be the complex dimension of g. Fix an orthonormal basis

 $\{e_1, e_2, \ldots, e_{2n}\} \subset \mathfrak{g}$ 

of the real vector space g for the Hermitian structure  $H_0$ . From (1) we conclude that

$$(\mathbf{d}^*\omega)(\widetilde{u}) = -\sum_{i=1}^{2n} H(\widetilde{\mathrm{ad}}_{J(u)}(e_i), \widetilde{e}_i) = -\mathrm{trace}(\mathrm{ad}_{J(u)});$$
(2)

note that the fact that  $(d^*\omega)(\widetilde{u})$  is a constant function follows directly because it is right translation invariant. For any  $g \in G$ , let

$$\operatorname{Ad}_{\sigma}: G \to G$$

be the automorphism defined by  $z \mapsto g^{-1}zg$ . Fix a right translation invariant Haar measure  $\mu$  on *G*. Note that

$$(L_{\sigma^{-1}} \circ R_g)^*(\mu) = \operatorname{Ad}^*_{\sigma}(\mu)$$

for all  $g \in G$ , where  $L_g$  and  $R_g$  are the translations by g defined earlier. We showed earlier that G is unimodular. Therefore, from (3) we have

$$\operatorname{Ad}_{g}^{*}(\mu) = \mu$$

for all  $g \in G$ . Taking the derivative of this identity, we conclude that

 $trace(ad_v) = 0$ 

for all  $v \in \mathfrak{g}$ . Now the proof is completed by the identity in (2).  $\Box$ 

Corollary 2.2. Let G be as in Proposition 2.1. Then

$$\mathrm{d}\omega^{n-1}=0,$$

where *n* is the complex dimension of *G*.

**Proof.** Let " $\star$ " be the Hodge-star operator on differential forms corresponding to the Hermitian structure *H*. Since  $\star d^*\omega = c \cdot d\omega^{n-1}$ , where  $c \in \mathbb{C} \setminus \{0\}$ , it follows from Proposition 2.1 that  $d\omega^{n-1} = 0$ .  $\Box$ 

From Corollary 2.2 we have  $\partial \overline{\partial} \omega^{n-1} = 0$ , meaning *H* is a Gauduchon metric.

### 3. Degree of invariant bundles and semistability

Take any G as before. Let

 $\Gamma \subset G$ 

be a discrete subgroup such that  $G/\Gamma$  is compact. Let  $\widetilde{H}$  be the Hermitian structure on  $G/\Gamma$  defined by H (recall that H is right-translation invariant). Let  $\widetilde{\omega}$  be the (1, 1)-form on  $G/\Gamma$  associated to  $\widetilde{H}$ . To  $\widetilde{\omega}$  pulls back to  $\omega$  on G.

For a coherent analytic sheaf  $\mathcal{E}$  on  $G/\Gamma$ , define

degree(
$$\mathcal{E}$$
) :=  $\int_{G/\Gamma} c_1(\det(\mathcal{E})) \wedge \widetilde{\omega}^{n-1} \in \mathbb{R},$ 

where det( $\mathcal{E}$ ) is the determinant line bundle for  $\mathcal{E}$  (see [2, Ch. V, §6] for the definition of determinant bundle), and  $c_1(\det(\mathcal{E}))$  is a first Chern form for det( $\mathcal{E}$ ). Since

 $\mathrm{d}\widetilde{\omega}^{n-1}=0$ 

(by Corollary 2.2), and any two first Chern forms for  $det(\mathcal{E})$  differ by an exact form, it follows that  $degree(\mathcal{E})$  is independent of the choice of the first Chern form for  $det(\mathcal{E})$ .

For any  $g \in G$ , let  $\beta_g : G/\Gamma \to G/\Gamma$  be the biholomorphism defined by  $L_g$ . A vector bundle *E* over  $G/\Gamma$  is called *invariant* if  $\beta_g^* E$  is holomorphically isomorphic to *E* for all  $g \in G$ .

**Theorem 3.1.** Let *E* be an invariant vector bundle over  $G/\Gamma$ . Then

degree(E) = 0.

**Proof.** The proof is exactly identical to the proof of Theorem 2.2 of [1]. We refrain from repeating it.  $\Box$ 

A vector bundle *E* over  $G/\Gamma$  is called *semistable* if

$$\frac{\text{degree}(V)}{\text{rank}(V)} \leqslant \frac{\text{degree}(E)}{\text{rank}(E)}$$

for every coherent analytic subsheaf  $V \subset E$  of positive rank.

**Lemma 3.2.** Let *E* be an invariant holomorphic vector bundle on  $G/\Gamma$ . Then *E* is semistable.

**Proof.** The proof is exactly identical to the proof of Lemma 2.4 of [1].  $\Box$ 

As explained in the paragraph after the proof of Lemma 2.4 in [1], Lemma 3.2 generalizes to the following statement: Any invariant holomorphic principal *H*-bundle over  $G/\Gamma$  is semistable, where *H* is any complex reductive affine algebraic group.

(3)

## References

- [1] I. Biswas, Semistability of invariant bundles over  $G/\Gamma$ , C. R. Acad. Sci. Paris, Ser. I 349 (2011) 1187–1190.
- [2] S. Kobayashi, Differential Geometry of Complex Vector Bundles, Publications of the Mathematical Society of Japan, vol. 15, Iwanami Shoten Publishers and Princeton University Press, 1987.
- [3] M.S. Raghunathan, Discrete Subgroups of Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York-Heidelberg, 1972.