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It is proved that a Randers metric F = α+β on a manifold of dimension n � 3 is projective
if and only if the Lie algebra of projective vector fields p(M, F ) has (locally) dimension
n(n + 2). This can be regarded as an analogue of the corresponding result in Riemannian
geometry.
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r é s u m é

On démontre qu’une métrique de Randers F = α + β sur une variété de dimension n � 3
est projective si et seulement si l’algèbre de Lie des champs de vecteurs projectifs p(M, F )

est (localement) de dimension n(n + 2). Ceci peut être considéré comme un analogue du
résultat correspondant en géométrie riemannienne.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The projective Finsler metrics are smooth solutions to the historic Hilbert’s fourth problem. Unlike the Riemannian
metrics, a non-projective Finsler metric may be of constant flag curvature in Finsler geometry; see [2]. This causes a failure
in legitimacy of Beltrami’s theorem in characterizing the Riemannian metrics of constant sectional curvature, see [4] for
intuition. This controversial fact is also responsible for concerns regarding the accuracy of other local characterizations of
projective Riemannian metrics in Finsler geometry. A celebrated characterization of projective Riemannian metrics deals
with the (local) dimension of the Lie algebra of projective vector fields p(M,α) and presents the maximum projective
symmetry in physical terms: a Riemannian metric on a manifold of dimension n � 3 is projective if and only if dim(p(M,α)) =
n(n+2). The Randers metrics are the most popular Finsler metrics in Differential geometry and Physics simply obtained by a

Riemannian metric α =
√

aij(x)yi y j and a 1-form β = bi(x)yi as F = α+β and were introduced by G. Randers in [10] in the

contexts of General Relativity. Nevertheless, the projective Randers metrics of isotropic S-curvature are locally characterized
by Chen et al. in [3]. Moreover, the projective Randers metrics of constant S-curvature are locally characterized in [7,8].
Here, we establish the following characterization of projective Randers metrics:

Theorem 1.1. A Randers metric F = α + β on a manifold M of dimension (n � 3) is projective if and only if p(M, F ) has (locally)
dimension n(n + 2).
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The horizontal and vertical derivations are exerted with respect to the Berwald connection and are denoted by subscripts |i
and .i , respectively. Moreover, we deal with pure Randers metrics, i.e. β �= 0.

2. Projective vector fields on Randers spaces

Every vector field X on M induces naturally a transformation under the following infinitesimal coordinate transforma-

tions on TM, (xi, yi) → (x̄i, ȳi) given by x̄i = xi + V i dt, ȳi = yi + yk ∂V i

∂xk dt . This leads us to the notion of the complete lift V̂
of V to a vector field on TM0 given by

V̂ = V i ∂

∂xi
+ yk ∂V i

∂xk

∂

∂ yi
.

The Lie derivatives of Finslerian geometric objects should be regarded with respect to V̂ . Notice that, £V̂ yi = 0, £V̂ dxi = 0
and the differential operators £V̂ , ∂

∂xi , exterior differential operator d and ∂

∂ yi commute. The vector field V is called a

projective vector field, if there is a function P on TM0 such that £V̂ Gi
k = Pδi

k + Pk yi , where Pk = P .k , see [1]. In this case,
given any appropriate t , the local flow {φt} associated to V is projective transformation. If V is a projective vector field,
then [1,6]:

£V̂ Gi = P yi,

£V̂ Gi
jk = δi

j Pk + δi
k P j + yi Pk. j,

£V̂ Gi
jkl = δi

j Pk.l + δi
k P j.l + δi

l Pk. j + yi Pk. j.l,

£V̂ G jl = (n + 1)P j.l, (1)

where, Gi
j = Gi

. j , Gi
jk = Gi

j.k , Gi
jkl = Gi

jk.l and G jl = Gi
jil . A projective vector field is called affine if P = 0. Every Killing

vector field is affine. On the Riemannian spaces, given any projective vector field V the function P = P (x, y) is linear with
respect to y, while in the Finslerian setting the mentioned linearity is a non-Riemannian obstruction. A projective vector
field V is called a special projective vector field if £V̂ G jl = 0, equivalently, P (x, y) = Pi(x)yi due to (1).

Let (M,α) be a Riemannian space and β = bi(x)yi be a 1-form defined on M such that ‖β‖x := supy∈Tx M β(y)/α(y) < 1.
The Finsler metric F = α +β is called a Randers metric on a manifold M . Denote the geodesic spray coefficients of α and F
by the notions Gi

α and Gi , respectively and the Levi-Civita connection of α by ∇ . Define ∇ jbi by (∇ jbi)θ
j := dbi − b jθ

j
i ,

where θ i := dxi and θ
j

i := Γ̃
j

ik dxk denote the Levi-Civita connection forms and ∇ denotes its associated covariant derivation
of α. Let us put

ri j := 1

2
(∇ jbi + ∇ib j), si j := 1

2
(∇ jbi − ∇ib j),

si
j := aihshj, s j := bis

i
j, eij := ri j + bis j + b jsi .

Then Gi are given by

Gi = Gi
α +

(
e◦◦
2F

− s◦
)

yi + αsi◦, (2)

where e◦◦ := ei j yi y j , s◦ := si yi , si◦ := si
j y j and Gi

α denote the geodesic spray coefficients of α, see [11].
The projective vector fields are variously characterized in many contexts such as [1]. The projective vector fields in a

Randers space (M, F = α + β) can be characterized in terms of α and β in the following theorem:

Theorem 2.1. (See [7,9].) A vector field V is projective on a Randers space (M, F = α + β) if and only if V is projective in (M,α) and
£V̂ (αsi

j) = 0.

Remark 1. Theorem 2.1 follows that the Lie algebra of projective vector fields in (M, F ) is a Lie sub-algebra of the Lie
algebra of projective vector fields in (M,α), namely p(M, F ) ⊆ p(M,α). Hence, we have the inequalities dim(p(M, F )) �
dim(p(M,α)) � n(n + 2).

3. Proof of main theorem

Suppose that we have dim(p(M, F )) = n(n + 2). By Remark 1, it follows that dim(p(M,α)) = n(n + 2) as well as
p(M, F ) = p(M,α). This results that α is of maximum projective symmetry and thus it is of constant sectional curva-
ture, say k. Moreover, every Killing vector field V in (M,α) is projective vector field in (M, F ). It is also well known that
the Killing vector fields V are locally of the form
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V i = Q i
kxk + C i + k〈x, C〉xi, (3)

where, C is an arbitrary constant vector and Q i
k is an arbitrary constant skew-symmetry matrix. On the other hand,

by Theorem 2.1, £V̂ (αsi
j) = 0. V is a Killing vector field and hence £V̂ si j = £V si j = 0. This provides the following equation:

£V si j = ∂V k

∂x j
sik + ∂V k

∂xi
skj + V k ∂

∂xk
si j = 0. (4)

Let us assume C = 0 in the sequel. From (3), we obtain

∂V k

∂x j
= Q k

j,
∂V k

∂xi
= Q k

i . (5)

Plugging the terms ∂V k

∂x j and ∂V k

∂xi from (5) in (4), we infer:

Q k
jsik + Q k

i skj + Q k
lx

l ∂

∂xk
si j = 0, (6)

where, Q = (Q k
j) is an arbitrary skew-symmetric matrix. Consider two fixed distinct indices l0 and k0 such that Q k0 l0 =

−Q l0 k0 = 1 and Q k
l = 0 if k �= k0 or l �= l0. Given any indices i and j such that i, j �= l0, we have

Q k
jsik = 0, Q k

i skj = 0, Q k
lx

l =
⎧⎨
⎩

xl0 , k = k0,

−xk0 , k = l0,
0, otherwise.

(6) becomes (xl0 − xk0 ). ∂

∂xk0
si j = 0. It follows that, ∂

∂xk si j = 0 if i, j �= k. Now, fix two distinct indices i and j and consider

the matrix Q given by Q i
j = −Q j

i = 1 and Q k
l = 0 if k �= i or l �= l0. Observe that for the matrix Q we have

Q k
jsik = Q i

j sii = 0, Q k
i skj = Q j

i s j j = 0, Q k
lx

l =
⎧⎨
⎩

xi, k = j,
−x j, k = i,
0, otherwise,

and (6) becomes (xi − x j). ∂

∂x j si j = 0. It follows then given any two indices i and j, we have ∂

∂x j si j = 0. Finally, it results that

given any three indices i, j and k, we have ∂

∂xk si j = 0. Plugging this in (6) we obtain Q k
j sik + Q k

i skj = 0. Now, let i �= j and

k0 �= i, j and Q k0 i = −Q i
k0 = 1 and Q k

l = 0 if k �= k0 or l �= i. Thus, (6) can be written as follows: Q k
j sik + Q k

i skj = sk0 j = 0.
Since i and j are arbitrarily chosen, hence si j = 0. Namely, the 1-form β is closed. But, α has been already proved to have
constant sectional curvature. Summarizing, β is closed, α is constant sectional curvature. This is exactly when F = α + β is
locally projectively flat and has scalar flag curvature.

Conversely, let us suppose that F = α + β is projective, equivalently α has constant sectional curvature and β is closed;
in particular, dim(p(M,α)) = n(n + 2). The 1-form β is closed, hence si j = 0 and by (2) F and α are projectively related. In
this case, we have p(M,α) = p(M, F ) and we obtain dim(p(M, F )) = dim(p(M,α)) = n(n + 2). �
Remark 2. The very recent work [5] shows that there are topological obstructions for a projective Randers space to have an
n(n + 2)-dimensional Lie algebra of projective vector fields.
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