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Unique existence of solutions to porous media equations driven by continuous linear
multiplicative space–time rough signals is proven for initial data in L1(O). The generation
of a continuous, order-preserving random dynamical system (RDS) on L1(O) and the
existence of a “small” random attractor for stochastic porous media equations perturbed by
linear multiplicative noise in space and time is obtained. Uniform L∞ bounds and uniform
space–time continuity of solutions is shown. General noise including fractional Brownian
Motion for all Hurst parameters is contained. A pathwise Wong–Zakai result for driving
noise given by a continuous semimartingale is obtained.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

L’existence et l’unicité des solutions des équations aux milieux poreux pilotés par des
« rough paths », continus, linéaire multiplicatifs et distribués dans l’espace et le temps
sont démontrées pour des conditions initiales dans L1(O). On obtient la génération d’un
système dynamique aléatoire continu et monotone dans L1(O) ainsi que l’existence d’un
« petit » attracteur aléatoire pour des équations aux milieux poreux stochastiques perturbés
par un bruit linéaire multiplicatif, distribué dans l’espace et le temps. Des bornes uniformes
dans L∞(O) et la continuité uniforme des solutions dans l’espace et le temps sont
démontrées. Le cas d’un bruit généralisé, y compris le mouvement Brownien fractionnaire
pour tous les paramétres de Hurst est contenu. Un résultat trajectoire du type Wong–Zakai
pour un bruit mené par une semimartingale continue est obtenu.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Porous medium equation driven by rough signals

Let O ⊆ R
d be a bounded domain with smooth boundary ∂O in arbitrary dimension d ∈N, T > 0 and OT := [0, T ] ×O.

We consider partial differential equation driven by rough signals of the type

✩ A more detailed account of the results presented here can be found in (Gess, 2011 [4]).
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dXt = �
(|Xt |m sgn(Xt)

)
dt +

N∑
k=1

fk Xt ◦ dz(k)
t , on OT

X(0) = X0, on O
(1)

with Dirichlet boundary conditions, m > 1, driven by signals z(k) ∈ C([0, T ];R) and with fk ∈ C∞(Ō) (we assume high
regularity of fk for simplicity only). Giving meaning to Eq. (1), in particular to the occurring stochastic integral, is part of
the results. For detailed proofs of the results presented here we refer to [4].

We emphasize that by the spatial dependency of the functions fk the noise acts in space as well as in time. For this
type of noise even the generation of a continuous RDS by corresponding stochastic partial differential equations (SPDE)
with quasilinear drift has been an open problem and is solved in this paper for the first time. In contrast to the case of
additive or real (i.e. non-spatially distributed) multiplicative noise, the standard method of transforming the SPDE into a
random PDE becomes highly non-trivial, because the space-dependency of the noise destroys the monotonicity structure
of the transformed equation. A construction of stochastic flows and invariant manifolds for semilinear SPDE with linear
multiplicative space–time noise can be found in [5].

The construction of solutions to (1) for signals of bounded variation proceeds by first transforming the equation into a
PDE and then by construction of solutions to this transformed equation. More precisely, let μt(ξ) := −∑N

k=1 fk(ξ)z(k)
t . Then

Y := eμ X satisfies the transformed equation

∂t Yt = eμt �
((

e−μt Yt
)m

sgn
(
e−μt Yt

))
, on OT (2)

with Dirichlet boundary conditions and initial condition Y0. This transformation will be rigorously justified below. Our
results extend [1] where under restrictions on the dimension d and the order m unique existence of solutions for (2) with
essentially bounded initial conditions has been shown.

Let us define what we mean by a solution to (1) and (2). Defining B(x)(z) := ∑N
k=1 fkxz(k) for x ∈ L1(O) and z ∈ R

N we

can rewrite B(Xt)dzt = ∑N
k=1 fk Xt dz(k)

t . Let W n,p(O) be the Sobolev space of order n in L p(O), W n,p
0 (O) the subspace of

functions vanishing on ∂O, Cm,n(ŌT ) ⊆ C(Ō) be the set of all continuous functions on OT having m continuous derivatives
in time and n continuous derivatives in space and let C1-var([0, T ]; H) be the set of functions of bounded variation. Further,
let Φ(r) := |r|m sgn(r).

Definition 1.1.

(i) Let Y0 ∈ L1(O). We call Y ∈ L1(OT ) a (very) weak solution to (2) if Φ(e−μY ) ∈ L1([0, T ]; W 1,1
0 (O)) (∈ L1(OT ) resp.)

and

−
∫
OT

Yr∂rη dξ dr −
∫
O

Y0η0 dξ =
∫
OT

Φ
(
e−μr Yr

)
�

(
eμr ηr

)
dξ dr, (3)

for all η ∈ C1(ŌT ) (∈ C1,2(ŌT ) resp.) with η = 0 on [0, T ] × ∂O and on {T } ×O.
(ii) Let z ∈ C1-var([0, T ];RN ) and X0 ∈ L1(O). A function X ∈ L1(OT ) such that t �→ (

∫
O B(Xt)ηt dξ) is continuous is said to

be a (very) weak solution to (1) if Φ(X) ∈ L1([0, T ]; W 1,1
0 (O)) (∈ L1(OT ) resp.) and

−
∫
OT

Xr ∂rη dξ dr −
∫
O

X0η0 dξ =
∫
OT

Φ(Xr)�ηr dξ dr +
T∫

0

(∫
O

B(Xr)ηr dξ

)
dzr,

for all η ∈ C1(ŌT ) (∈ C1,2(ŌT ) resp.) with η = 0 on [0, T ] × ∂O and on {T } ×O.

A rigorous formulation for the transformation of (1) into (2) can be given as following: Let X0 ∈ L1(O), z ∈
C1-var([0, T ];RN ) and X ∈ L1(OT ) with X ∈ C([0, T ]; H) or X ∈ C([0, T ]; L1(O)). Then X is a very weak solution to (1)
iff Y := eμ X is a very weak solution to (2). We prove the following:

Theorem 1.2. Essentially bounded very weak solutions to (2) are unique.

We define H1
0(O) := W 1,2

0 (O) and denote its dual by H .

Theorem 1.3. Let Y0 ∈ L∞(O) and z ∈ C([0, T ];RN ). There exists a unique weak solution Y ∈ C([0, T ]; H)∩ L∞(OT ) to (2) satisfying
Φ(e−μY ) ∈ L2([0, T ]; H1

0(O)). There is a function U : [0, T ] → R̄ (taking the value ∞ at t = 0) which is piecewise smooth on (0, T ]
such that for all Y0 ∈ L∞(O)

Yt � Ut, a.e. in O, ∀t ∈ [0, T ].
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If z ∈ C1-var([0, T ];RN ) then this yields the existence of a weak solution to (1) given by X = e−μY . A key point of
Theorem 1.3 is that the upper bound Ut does not depend on the initial condition Y0. Solutions to (1) for continuous signals
are constructed by an approximation of the driving signal.

Definition 1.4. Let z ∈ C([0, T ];RN ). We call X ∈ C([0, T ]; H) a rough weak solution to (1) if X(0) = X0 and for all approx-
imations z(ε) ∈ C1-var([0, T ];RN ) of the driving signal z with z(ε) → z in C([0, T ];RN ) and corresponding weak solutions
X (ε) to (1) driven by z(ε) we have X (ε)

t → Xt in H for all t ∈ [0, T ].

Theorem 1.5. Let X0 ∈ L∞(O) and z ∈ C([0, T ];RN ). Then there exists a unique rough weak solution X to (1) given by X = e−μY ,
where Y is the corresponding weak solution to (2). X satisfies Xt � Ut a.e. in O for all t ∈ [0, T ], where U is as in Theorem 1.3.

Proving Lipschitz continuity in the initial condition with respect to the L1(O) norm we obtain existence of solutions
to (1) for initial conditions in L1(O) in a limiting sense. Let (·)+ := max(0, ·) and C w([0, T ]; H) be the space of weakly
continuous functions in H .

Definition 1.6. Let X0 ∈ L1(O) and z ∈ C([0, T ];RN ). A function X ∈ C w([0, T ]; L1(O)) is said to be a limit solution to (1) if
X(0) = X0 and for all approximations X (δ)

0 ∈ L∞(O) with X (δ)
0 → X0 in L1(O) and corresponding rough weak solutions X (δ)

to (1) we have X (δ)
t → Xt in L1(O) uniformly in time.

Theorem 1.7. Let z ∈ C([0, T ];RN ). For each X0 ∈ L1(O) there is a unique limit solution X to (1) satisfying Φ(X) ∈ L1(OT ). For
X (i)

0 ∈ L1(O), i = 1,2, the corresponding limit solutions satisfy

sup
t∈[0,T ]

∥∥(
X (1)

t − X (2)
t

)+∥∥
L1(O)

+ ∥∥(
Φ

(
X (1)

) − Φ
(

X (2)
))+∥∥

L1(OT )
� C

∥∥(
X (1)

0 − X (2)
0

)+∥∥
L1(O)

.

In addition, Xt � Ut a.e. in O for all t ∈ [0, T ], where Ut is as in Theorem 1.3.

As a special application we obtain a comparison principle: For X (1)
0 , X (2)

0 ∈ L1(O) with X (1)
0 � X (2)

0 almost everywhere

we have X (1)
t � X (2)

t , for all t ∈ [0, T ], a.e. in O.
We say that a quantity depends only on the data if it is a function of d, m, T . By proving that the regularity results given

in [3] may be applied in our situation we obtain:

Theorem 1.8. Let z ∈ C([0, T ];RN ), X0 ∈ L1(O) and X be the corresponding limit solution. Then

(i) X is uniformly continuous on every compact set K ⊆ (0, T ] × O, with modulus of continuity depending only on the data and
dist(K , ∂OT ).

(ii) If X0 ∈ L∞(O) is continuous on a compact set K ⊆O, then X is uniformly continuous on [0, T ]× K ′ for every compact set K ′ ⊆ K̊ ,
with modulus of continuity depending only on the data, dist(K , ∂O), dist(K ′, ∂ K ), ‖X0‖L∞(O) and the modulus of continuity of
X0 over K .

(iii) Assume:
(O1) There exist θ∗ > 0, R0 > 0 such that ∀x0 ∈ ∂O and ∀R � R0: |O ∩ B R(x0)| < (1 − θ∗)|B R(x0)|.
Then for every τ > 0, X is uniformly continuous on [τ , T ] × Ō with modulus of continuity depending only on the data, θ∗ and τ .

Corollary 1.9. Let z ∈ C([0, T ];RN ), X0 ∈ L1(O). Then X ∈ C([0, T ]; L1(O))∩C((0, T ]; L p(O)) for every p ∈ [1,∞). If X0 ∈ L∞(O)

then X ∈ C([0, T ]; L p(O)) for every p ∈ [1,∞).

2. Stochastic porous medium equation and RDS

We now pass to the case of stochastically perturbed porous media equations. Let (Ω,F ,Ft ,P) be a filtered probabil-
ity space, (zt)t∈R be an R

N -valued adapted stochastic process and ((Ω,F ,P), (θt)t∈R) be a metric dynamical system. We
assume

(S1) (Strictly stationary increments) For all t, s ∈R, ω ∈ Ω: zt(ω) − zs(ω) = zt−s(θsω).
(S2) (Regularity) zt has continuous paths.

We have assumed z0 = 0 for notational convenience only. In particular, applications include fractional Brownian Motion with
arbitrary Hurst parameter. We then consider the SPDE
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dXt = �Φ(Xt)dt +
N∑

k=1

fk Xt ◦ dz(k)
t , on OT

X(0) = X0, on O.

(4)

For x ∈ L1(O) and ω ∈ Ω let X(t, s;ω)x denote the solution to (1) with initial value x at time s driven by the continuous
signal z·(ω). If the signal z is given by a continuous semimartingale then (4) can be interpreted in the sense of stochastic
Stratonovich integration. In this case we show that the limit solution X is a probabilistic solution to (4). Together with
the pathwise convergence of the approximants X (ε) → X obtained in Theorem 1.5 via approximation by paths of bounded
variation this yields a pathwise Wong–Zakai result (cf. e.g. [6]). For the notions of (order-preserving) RDS and random
attractors we refer to [2] and references therein.

Theorem 2.1. The map ϕ given by ϕ(t − s, θsω)x := X(t, s;ω)x (t � s, ω ∈ Ω, x ∈ L1(O)) is a continuous RDS and ϕ is order
preserving, i.e. ϕ(t,ω)x1 � ϕ(t,ω)x2 a.e. in O if x1, x2 ∈ L1(O) with x1 � x2 a.e. in O.

Let D be the system of all random closed sets. The RDS ϕ satisfies the same regularity and regularizing properties as
proved for the pathwise solutions in Theorem 1.8. Using this we prove

Theorem 2.2. The RDS ϕ has a D-random attractor A (as an RDS on L1(O)). A is compact in each L p(O) and attracting in L p(O)-
norm, p ∈ [1,∞). Moreover, A(ω) is a bounded set in L∞(O) and the functions in A(ω) restricted to any compact set K ⊆ O are
equicontinuous on K . If (O1) is satisfied, then A(ω) is compact in C(Ō) and attracting in L∞(O)-norm.

The random attractor A is unique since it is an invariant, random closed set.

References

[1] V. Barbu, M. Röckner, On a random scaled porous media equation, J. Differential Equations 251 (9) (2011) 2494–2514.
[2] I. Chueshov, Monotone Random Systems Theory and Applications, Lecture Notes in Mathematics, vol. 1779, Springer-Verlag, Berlin, 2002.
[3] E. DiBenedetto, Continuity of weak solutions to a general porous medium equation, Indiana Univ. Math. J. 32 (1) (1983) 83–118.
[4] B. Gess, Random attractors for stochastic porous media equations perturbed by space–time linear multiplicative noise, arXiv:1108.2413v1, 2011.
[5] S.-E.A. Mohammed, T. Zhang, H. Zhao, The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential

equations, Mem. Amer. Math. Soc. 196 (917) (2008), pp. vi+105.
[6] E. Wong, M. Zakai, On the convergence of ordinary integrals to stochastic integrals, Ann. Math. Statist. 36 (1965) 1560–1564.


	Random attractors for stochastic porous media equations perturbed by space-time linear multiplicative noise
	1 Porous medium equation driven by rough signals
	2 Stochastic porous medium equation and RDS
	References


