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The main purpose of the Note is to show that if the second Aluthge transform of an
invertible operator is normal, so it is its first Aluthge transform. This extends results
due to Moslehian and Nabavi Sales [Some conditions implying normality of operators, C.
R. Math. Acad. Sci. Paris, Ser. I 349 (2011) 251–254] and Rose and Spitkovsky [On the
stabilization of the Aluthge sequence, International Journal of Information and Systems
Sciences 4 (1) (2008) 178–189]. Also, the structure of an injective operator with normal
Aluthge transform is studied.
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r é s u m é

Dans cette Note on démontre que, si la deuxième transformation de Aluthge d’un opérateur
inversible est normale, alors sa première transformation de Aluthge est aussi normale, on
étend ainsi les résultats de Moslehian et Nabavi Sales [Some conditions implying normality
of operators, CRAS, Paris, Ser. I 349 (2011) 251–254], et Rose et Spitkovsky [On the
stabilization of of the Aluthge sequence, International Journal of Information and Systems
Sciences 4 (1) (2008) 178–189]. Par ailleurs on établit la structure d’opérateur injectif avec
transformation normale de Altuthge.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

For a bounded operator S on a general Hilbert space K , its Aluthge transform S̃ is defined as S̃ := A S U S A S , where A S :=
|S|1/2 and U S is the minimal partial isometry establishing the polar decomposition S = U S |S| [1]. The Aluthge transform is
designed as a measure for the normality of an operator; this is justified by the facts that (i) a normal operator is clearly
equal to its Aluthge transform and, in fact, T = T̃ if and only if T is quasi-normal, (ii) the iterated sequence of Aluthge
transforms of an n × n matrix converges to a normal matrix, (iii) if the limit of the iterated sequence of a general bounded
operator exists, then the limit is a normal matrix, (iv) if S acts bijectively on a finite dimensional space and if its second
Aluthge transform is normal, so it is its first Aluthge transform, and (v) if σ(U S ) lies in an open semicircle and if S̃ is
normal, then S is normal. It is also known that σ(T ) = σ(T̃ ) for all bounded linear operators T . (See [2,3,5–7,9].)
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The normality results of [7] and [9] will be extended in the present Note. The structure of injective bounded operators
with normal Aluthge transforms is studied in Section 2; the normality of the Aluthge transform of an invertible operator
whose second Aluthge transform is normal will be given in Section 3.

2. The structure of operators with normal Aluthge transforms

The (minimal) partial isometry U S of a polar decomposition S = U S |S| is isometry if and only if S is injective; moreover,
U S is unitary if and only if S is a quasi-affinity. (A quasi-affinity is an operator which is injective and has a dense range.)
Also, S and |S| have the same null spaces. In this section, we study the class of all injective operators whose Aluthge
transforms are normal. To simplify the arguments, we assume without loss of generality that the underlying Hilbert space
is separable; in fact, if x ∈ K is an arbitrary vector, then the closed linear span H of all words in S and S∗ applied to
x is a reducing separable invariant subspace of S , S = S1 ⊕ S2 and S̃ = S̃1 ⊕ S̃2 with respect to K = H ⊕ H⊥ . Moreover,
an operator is normal if and only if its restriction to any reducing separable invariant subspace is normal. Motivated by this
observation, we may and shall assume without loss of generality that our underlying Hilbert spaces are separable. Thus,
throughout the remainder of the paper, the symbol T will be reserved for a bounded operator on a separable Hilbert space
H and the subscript T in AT and U T will be dropped. The domain, the null space and the range of a general linear map
S are denoted by D(S), ker S and R(S), respectively. It is known that [9] if T is boundedly invertible and T̃ (= AU A)

is normal, then A and U 2 commute. The following theorem extends this result to the case that T is merely an injective
bounded linear operator with a normal Aluthge transform. The theorem will also illustrate a direct integral structure for
such operators. (For the definition and properties of direct integrals, see pp. 496–504 of [8] and Theorem 18.1 of [4].)
Recall that, for every normal operator N on H , N = N+ ⊕ (−N−) with respect to H = H+ ⊕ H− in which H± =R(E(Ω±)),
where E is the spectral measure corresponding to N ,

Ω+ = {
reiθ : r � 0;0 � θ < π

}
, and Ω− = C \ Ω+.

Clearly,

σ
(
N±) ⊂ Ω+, E+(

(−∞,0)
) = 0, and E−(

(−∞,0]) = 0,

where E± is the spectral measure corresponding to N± .

Theorem 2.1. Let T be injective and assume T̃ is normal. Then U is unitary, U 2 A = AU 2 and

T =
∫ ⊕

[0,π ]
eiθ U (θ)A2(θ)dμ(θ)

for some positive Borel measure μ on [0,π ], where U (θ) is a unipotent self-adjoint operator and A(θ) is a positive operator for almost
all θ [μ].

Proof. Since T is injective, |T |α is injective for all α � 0 and hence R(|T |α) = ker(|T |α)⊥ = H for all α � 0. Thus, U is
an isometry from H onto R(T ). Now, since AU A is normal, it follows that AU A2U∗ A = AU∗ A2U A and, hence, U A2U∗ =
U∗ A2U . (Note that A is an injective operator with a dense range, and all the involving operators are uniformly continuous.)
To show U is unitary, it is sufficient to prove that U has a dense range or, equivalently, ker U ∗ = {0}. Let x ∈ ker U∗ be
arbitrary. Then

‖AU x‖2 = 〈
U∗ A2U x, x

〉 = 〈
U A2U∗x, x

〉 = 0,

which implies that AU x = 0. Since AU is injective, it follows that x = 0. Thus, U ∗ is injective and, hence, unitary. Moreover,
U 2 A2 = A2U 2 and, by positivity of A, U 2 Aα = AαU 2 for all α � 0.

Now that U is unitary (and, hence, normal), consider the direct sum U = U+ ⊕ (−U−) with the underlying direct sum
H = H+ ⊕ H− . Let E , F and G be the spectral measures corresponding to U , U 2 and U+ ⊕U− , respectively. Define g : C→C

by g(z) = z2. Then, for every Borel subset � of unit circle T,

F (�) = χ�

(
U 2) = (χ�og)(U ) = χg−1(�)(U ) = E

(
g−1(�)

)
.

Letting Γ = Ω+ ∩ g−1(�) yields

E
(

g−1(�)
) = E

(
Γ ∪ (−Γ )

) = E+(Γ ) ⊕ E−(Γ ) = G(Γ ),

which implies that the commutant of U+ ⊕ U− is a subset of the commutant of U 2. Conversely, if Γ ⊂ T and Γ0 = Γ ∩Ω+ ,
then

G(Γ ) = G(Γ0) = E+(Γ0) ⊕ E−(Γ0) = E(Γ0 ∪ −Γ0) = E
(

g−1(g(Γ0)
)) = F

(
g(Γ0)

)
,

which implies that the commutant of U 2 is a subset of and, hence, equal to the commutant of U+ ⊕ U− .
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Next, define h(eiθ ) = θ for 0 � θ � π and let B± = h(U±). Note that B+ ⊕ B− = h(U+ ⊕ U−) and, hence, the commutant
of B+ ⊕ B− is equal to that of U+ ⊕ U− . By [8, pp. 496–504], there exist positive Borel measures μ± on [0,π ] such that

H± =
∫ ⊕

H±(θ)dμ±(θ), and B± =
∫ ⊕

B±(θ)dμ±(θ),

for appropriate families of Hilbert spaces {H±(θ)} and positive operators {B±(θ)}. Letting μ = μ+ + μ− and w±(θ) =
dμ±/dμ, one can identify

∫ ⊕ H+(θ)dμ(θ)⊕∫ ⊕ H−(θ)dμ(θ) and
∫ ⊕

(H+(θ)⊕ H−(θ))dμ(θ) via the unitary transformation∫ ⊕
f +(θ)dμ+(θ) ⊕

∫ ⊕
f −(θ)dμ−(θ) �→

∫ ⊕{
f +(θ)

[
w+(θ)

]1/2 ⊕ f −(θ)
[

w−(θ)
]1/2}

dμ(θ).

Moreover, up to unitary equivalence,

B+ ⊕ ±B− =
∫ ⊕

θ

[
I 0
0 ±I

]
dμ(θ), (1)

U+ ⊕ ±U− =
∫ ⊕

eiθ
[

I 0
0 ±I

]
dμ(θ), and (2)

|T | = A2 =
∫ ⊕ [

A11(θ) A12(θ)

A∗
12(θ) A22(θ)

]
dμ(θ), (3)

where the integrand of the last equation is positive definite for almost all θ[μ]. �
The following corollary generalizes Theorem 2.5 of [7]:

Corollary 2.2. Assume T is an injective operator and T̃ is normal. Then the following assertions are true:

(1) T = T1 ⊕ T2 , where T1 is the maximal reducing normal part of T .
(2) For every Borel subset � of the unit circle T, E2(−�) = 0 whenever E2(�) = 0, where E2 is the spectral measure corresponding

to T2 .

Proof. The proof of the existence of T1 is a simple maximality argument. So, we assume without loss of generality
that T = T2. Let � be a Borel subset of T and assume E(�) = 0. Let Λ = h(� ∩ Ω+). By the proof of Theorem 2.1,
H+(θ) = {0} and, hence, A2(θ) = A22(θ) for almost all θ ∈ Λ. Thus A2(θ)U (θ) = U (θ)A2(θ), which implies that the subspace∫ ⊕
Λ

H(θ)dμ(θ) is a reducing invariant subspace of T , on which T reduces to a normal part. Thus
∫ ⊕
Λ

ΛH(θ)dμ(θ) = {0} and
E(−�) = 0. A similar argument applied to � ∩ Ω− finishes the proof. �

The proof of Theorem 2.1 suggests the proof of the following proposition:

Proposition 2.3. For a normal quasi-affinity N, the commutant of N2 is equal to the commutant of N+ ⊕ N− .

3. Invertible operators with normal second Aluthge transforms

In this section, we show that if T is the Aluthge transform of an invertible operator S and if T̃ is normal, then T is
normal. The proof of the finite dimensional case in [9] has greatly motivated the proof of the infinite dimensional case
given below.

Theorem 3.1. Let T = S̃ for some invertible operator S and assume T̃ is normal. Then T is normal.

Proof. Note that an invertible operator is similar to its Aluthge transform. Thus T , S and T̃ are all invertible. Also, T (T ∗)−1 =
A S U 2

S A−1
S , which implies that the spectrum of T (T ∗)−1 lies on the unit circle. Now, since T̃ is normal, it follows that T , T ∗

and T −1 all lie in the commutant of U 2 and, by Theorem 2.1,

T
(
T ∗)−1 =

∫ ⊕
e2iθ U (θ)A(θ)U (θ)A(θ)−1 dμ(θ) = R

∫ ⊕
C(θ)dμ(θ) R−1,

where R = ∫ ⊕ A(θ)1/2 dμ(θ) and

C(θ) = e2iθ A(θ)−1/2U (θ)A(θ)U (θ)A(θ)−1/2. (4)

Thus the spectrum of C(θ) lies on the unit circle a.e. [μ]. Since e−2iθ C(θ) is positive, its spectrum is equal to {1} and, hence,
C(θ) = e2iθ I a.e. [μ]. Therefore, A(θ)1/2U (θ)A(θ)−1/2 = A(θ)−1/2U (θ)A(θ)1/2 and, thus A(θ)U (θ) = U (θ)A(θ) a.e. [μ].
Therefore, |T | and U commute, which means that T is normal. �
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Remark 3.2. Let M = ker A⊥ and let P : H → H be the orthogonal projection onto M . Assume B = A|M , V = P U |M and
W = (I − P )U |M . It is well known that T̃ j = 0 ⊕ (B V B) j and

T j = U AT̃ j−1 A =
[

0 W B(B V B) j−1 B
0 V B(B V B) j−1 B

]

for j = 1,2, . . . . Thus T is a nilpotent operator of order k if and only if T̃ is a nilpotent operator of order k − 1. This reveals
that the second Aluthge transform of a singular operator may be normal but its first Aluthge transform be non-normal.
Theorem 3.1 shows that this cannot happen for invertible operators. However, Theorem 2.1 leaves the following question
open:

Question. Assume the second Aluthge transform of a quasi-affinity is normal. Is it always true that its first Aluthge transform
is normal?
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