EI SEVIER

Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris. Ser. I

www.sciencedirect.com

Complex Analysis/Analytic Geometry

On the image of an algebraic projective space *

Sur l'image d'un espace algébrique projectif

Mihnea Colțoiu a, Natalia Gașițoi b, Cezar Joița a

ARTICLE INFO

Article history: Received 13 January 2012 Accepted after revision 6 February 2012 Available online 18 February 2012

Presented by the Editorial Board

ABSTRACT

We prove that if X is a projective algebraic space, Y is a normal compact complex space and $p: X \to Y$ is a surjective morphism with equidimensional fibers then Y is also projective algebraic.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

On démontre le résultat suivant : si X est un espace algébrique projectif, Y est un espace complexe compact normal et $p:X\to Y$ une application holomorphe surjective avec fibres équidimensionnelles alors Y est aussi un espace algébrique projectif.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

If X is a Kähler manifold, Y is a complex manifold, $p: X \to Y$ is a proper holomorphic map, and p is equidimensional, then it follows by a result of Varouchas [10] that Y is also Kähler. This result was extended in [11] to complex spaces with singularities (under the flatness assumption of p). On the other hand, it is known that the image of a Moishezon space by a holomorphic map is itself Moishezon (see, for example [1]). The well-known result of Moishezon [7] asserts that a compact complex manifold is projective if and only if it is Kähler and Moishezon. A similar result does not hold for spaces with singularities even for normal complex surfaces (see, e.g. [3]). In this Note we consider morphisms $p: X \to Y$ of compact complex spaces with equidimensional fibers such that X is a projective algebraic space. If X and Y are assumed to be smooth it follows from the results mentioned above that Y is projective algebraic.

Our main result (Theorem 2) states that if X is a projective algebraic space, Y is a normal compact complex space and $p: X \to Y$ is a morphism with equidimensional fibers then Y is also projective algebraic. When the fibers of p are 0-dimensional (i.e. p is a ramified covering map) this result was obtained by Remmert and Van de Ven in [8]. For fibers of positive dimension Theorem 2 was proved by C. Horst in [6], under the additional assumption that Y has isolated singularities, using an analytic version of Chevalley's criterion of projectivity (see [2]). Note that the normality assumption is essential (see e.g. [4], p. 171, Ex. 7.13 and [6]).

^a Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, Bucharest 014700, Romania

^b Department of Mathematics, State University A. Russo, Str. Pushkin 38, MD-3121, Bălți, Republic of Moldova

[†] The first and third named authors were supported by CNCS grant PN-II-ID-PCE-2011-3-0269.

E-mail addresses: Mihnea.Coltoiu@imar.ro (M. Colţoiu), natalia_gasitoi@yahoo.com (N. Gaṣiţoi), Cezar.Joita@imar.ro (C. Joiţa).

2. The results

We denote by $\mathbb{P}_{\nu,n}$ the projective space that parametrizes homogeneous polynomials $F \in \mathbb{C}[z_0, \ldots, z_n]$ of degree ν . For $F \in \mathbb{P}_{\nu,n}$ we set $Z(F) := \{[z_0 : \cdots : z_n] \in \mathbb{P}^n : F(z_0, \ldots, z_n) = 0\}$.

Lemma 1. Given a subvariety C, $\dim C \geqslant 1$, of \mathbb{P}^n then $\{F \in \mathbb{P}_{\nu,n} : \dim(Z(F) \cap C) = \dim(C)\}$ is a finite union of linear subspaces of $\mathbb{P}_{\nu,n}$ of codimension at least $\nu + 1$.

Proof. Let C_j , j = 1, ..., k, be the irreducible components of C with dim $C_i = \dim C$. Then we have

$$\left\{F \in \mathbb{P}_{\nu,n} \colon \dim(Z(F) \cap C) = \dim(C)\right\} = \bigcup_{j=1}^{k} \left\{F \in \mathbb{P}_{\nu,n} \colon Z(F) \supset C_j\right\}.$$

Obviously each $\{F \in \mathbb{P}_{\nu,n}: Z(F) \supset C_j\}$ is a linear subspace of $\mathbb{P}_{\nu,n}$.

For the codimension inequality notice that if $A_1, \ldots, A_{\nu+1}$ are distinct points on C_j for any fixed j then $\{F \in \mathbb{P}_{\nu,n} : F(A_l) = 0, l = \overline{1, \nu+1}\}$ has codimension $\nu+1$ in $\mathbb{P}_{\nu,n}$. Indeed, as $F(A_l) = 0$ is just a linear equation in $\mathbb{P}_{\nu,n}$, it suffices to show that for each $k \leq \nu$ there exists a homogeneous polynomial, F, of degree ν such that $F(A_1) = 0, \ldots, F(A_k) = 0$ and $F(A_{k+1}) \neq 0$. To see this let G_l be homogeneous polynomials of degree 1 in $z_0, \ldots, z_n, l = 1, \ldots, k$, such that $G_l(A_l) = 0$ and $G_l(A_i) \neq 0$ for $i \neq l, i = 1, \ldots, k+1$. We set $F = G_1^{i_1} \cdots G_k^{i_k}$ where $i_1, \ldots, i_k \geqslant 1$ are integers such that $i_1 + \cdots + i_k = \nu$. \square

We denote by $C_{n,k,d}$ the Chow variety that parametrizes subvarieties of degree d and dimension k of \mathbb{P}^n . We have then that $C_{n,k,d}$ is a quasi-projective variety and that the incidence set $\{(X,z)\in C_{n,k,d}\times\mathbb{P}^n\colon z\in X\}$ is an algebraic subset of $C_{n,k,d}\times\mathbb{P}^n$ (see, for example [9]).

Theorem 1. Suppose that n, k and d are integers, n, k, $d \ge 1$. Then there exists $v_0 \in \mathbb{Z}$, $v_0 \ge 1$, such that for every $v \in \mathbb{Z}$, $v \ge v_0$ there exists a homogeneous polynomial $F \in \mathbb{C}[z_0, z_1, \ldots, z_n]$ of degree v with the property that $Z(F) \subset \mathbb{P}^n$ contains no subvariety of \mathbb{P}^n of dimension k and degree at most d.

Proof. For $1 \le i \le d$ let

$$H_j := \{ (X, F) \in C_{n,k,j} \times \mathbb{P}_{\nu,n} \colon \dim(Z(F) \cap X) = k \}.$$

We prove that H_j is a closed algebraic subset of $C_{n,k,j} \times \mathbb{P}_{\nu,n}$. Let

$$\tilde{H}_j = \left\{ (X, z, F) \in C_{n,k,j} \times \mathbb{P}^n \times \mathbb{P}_{\nu,n} \colon z \in X, \ F(z) = 0 \right\}.$$

Notice that $\tilde{H}_i = \tilde{H}'_i \cap \tilde{H}''_i$ where

$$\tilde{H}'_{j} = \{(X, z) \in C_{n,k,j} \times \mathbb{P}^{n} \colon z \in X\} \times \mathbb{P}_{\nu,n}$$

and

$$\tilde{H}_j'' = C_{n,k,j} \times \big\{ (z,F) \in \mathbb{P}^n \times \mathbb{P}_{\nu,n} \colon F(z) = 0 \big\}.$$

As both \tilde{H}'_j and \tilde{H}''_j are closed algebraic subsets of $C_{n,k,j} \times \mathbb{P}^n \times \mathbb{P}_{\nu,n}$ it follows that \tilde{H}_j is a closed algebraic subset of $C_{n,k,j} \times \mathbb{P}^n \times \mathbb{P}_{\nu,n}$. Let $\pi_j : C_{n,k,j} \times \mathbb{P}^n \times \mathbb{P}_{\nu,n} \to C_{n,k,j} \times \mathbb{P}_{\nu,n}$ be the canonical projection. As \mathbb{P}^n is compact it follows that π_j is proper. If we denote by $\tilde{\pi}_j : \tilde{H}_j \to C_{n,k,j} \times \mathbb{P}_{\nu,n}$ the restriction of π_j to \tilde{H}_j we have that $\tilde{\pi}_j$ is also proper. It follows that $\{(X,F) \in C_{n,k,j} \times \mathbb{P}_{\nu,n}: \dim \tilde{\pi}_j^{-1}(X,F) \geqslant k\}$ is an analytic subset of $C_{n,k,j} \times \mathbb{P}_{\nu,n}$ (by the semi-continuity of the dimension of the fibers in the Zariski topology, see e.g. [12], p. 240). However $\pi_j^{-1}(X,F) = \{X\} \times (Z(F) \cap X) \times \{F\}$ and therefore $\dim \tilde{\pi}_j^{-1}(X,F) \leqslant k$. We deduce that $\{(X,F) \in C_{n,k,j} \times \mathbb{P}_{\nu,n}: \dim \tilde{\pi}_j^{-1}(X,F) \geqslant k\} = H_j$ and hence H_j is a closed analytic subset of $C_{n,k,j} \times \mathbb{P}_{\nu,n}$ as claimed.

Let $p_{1,j}: H_j \to C_{n,k,j}$, $p_{2,j}: H_j \to \mathbb{P}_{\nu,n}$ be the canonical projections. From Lemma 1 it follows that the fibers of $p_{1,j}$ have dimension at most $\dim(\mathbb{P}_{\nu,n}) - \nu - 1$ and therefore $\dim(H_j) \leqslant \dim C_{n,k,j} + \dim(\mathbb{P}_{\nu,n}) - \nu - 1$. If we choose $\nu \geqslant \max\{\dim C_{n,k,j}: j=1,\ldots,d\}$ then $\dim(H_j) < \dim\mathbb{P}_{\nu,n}$. Here the projections p_{2j} are not necessarily proper, but we can nevertheless conclude that $\bigcup_{j=1}^d p_{2,j}(H_j)$ is of Hausdorff dimension $\leqslant 2n-2$ in $\mathbb{P}_{\nu,n}$. Therefore for almost every polynomial $F \in \mathbb{P}_{\nu,n}$ we will have that Z(F) does not contain any irreducible component of X of dimension k for any $X \in C_{n,k,j}$, $j \leqslant d$. \square

For the next lemma we assume that X is a closed subvariety of \mathbb{P}^n , Y is a reduced compact complex space and $p: X \to Y$ is a surjective morphism. For $y \in Y$ we set $X_y := p^{-1}(y)$. If $\dim X_y = m$ we denote by $X_y^{(m)}$ the union of all irreducible components of X_y of dimension m.

Lemma 2. If the fibers of p, X_y , $y \in Y$, have all the same dimension m then there exists an integer d such that $\deg X_y^{(m)} \leqslant d$ for every $y \in Y$.

Proof. We prove first that if $y_0 \in Y$ is any point then there exists U a neighborhood of y_0 and an integer d_U such that $\deg X_y^{(m)} \leqslant d_U$ for every $y \in U$. Indeed, let L be a linear subspace of \mathbb{P}^n such that $\dim L = n - m - 1$ and $L \cap X_{y_0} = \emptyset$. For some small connected neighborhood U of y_0 we have that $L \cap X_y = \emptyset$ for every $y \in U$. Let $X(U) = p^{-1}(U)$. Note that $\mathbb{P}^n \setminus L$ has the structure of a holomorphic vector bundle $\pi : \mathbb{P}^n \setminus L \to \mathbb{P}^m$ and, for any $y \in U$, $\pi|_{X_y^{(m)}} : X_y^{(m)} \to \mathbb{P}^m$ is a branched covering of degree $d_y = \deg X_y^{(m)}$. We consider the analytic map $G : X(U) \to \mathbb{P}^m \times U$, $G(x) = (\pi(x), p(x))$. Then G is a proper finite surjective morphism. It follows that there exists an integer d_U such that $d_y \leqslant d_U$ for every $y \in U$.

Theorem 2. Suppose that X and Y are reduced compact complex spaces and $p: X \to Y$ is a surjective holomorphic mapping. We assume that X is projective algebraic, Y is normal and the fibers of p have all the same dimension. Then Y is projective algebraic.

Proof. We will prove the theorem by induction on the dimensions of the fibers of p. If p has discrete fibers this was proved in [8].

We assume now that we proved our theorem for every morphism such that each fiber has dimension k-1, $k\geqslant 1$, and we consider a proper surjective holomorphic mapping $p:X\to Y$ such that $X_y:=p^{-1}(y)$ has dimension k for each $y\in Y$. Let $X\hookrightarrow \mathbb{P}^n$ be an embedding of X. It follows from Lemma 2 that there exists a positive integer d such that $\deg X_y^{(k)}$ is at most d for every $y\in Y$. We apply then Theorem 1 and we deduce that there exists $F\in \mathbb{C}[z_0,z_1,\ldots,z_n]$, a homogeneous polynomial of sufficiently large degree, such that Z(F) contains no irreducible component of dimension k of the fibers of p. Then for every $y\in Y$ we have that $Z(F)\cap X_y\neq\emptyset$ and $\dim Z(F)\cap X_y=k-1$. If we let $X_1:=Z(F)\cap X$ and $y_1:X_1\to Y$ to the restriction of p we can apply the induction hypothesis and deduce that Y is projective algebraic. \square

Remark. In [5], Theorem 2.6, Hironaka studied proper mappings $\pi: X \to Y$ in the algebraic category and showed that a generic hypersection of X does not contain any fiber of Y. However his arguments rely heavily on the algebraicity of Y.

Acknowledgements

The authors are grateful to Iustin Coandă for useful discussions.

References

- [1] V. Ancona, G. Tomassini, Modifications Analytiques, Lecture Notes in Mathematics, vol. 943, Springer-Verlag, Berlin-New York, 1982.
- [2] G. Fischer, Projektive Einbettung komplexer Mannigfaltigkeiten, Math. Ann. 234 (1) (1978) 45–50.
- [3] H. Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962) 331–368.
- [4] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, Springer-Verlag, New York-Heidelberg, 1977.
- [5] H. Hironaka, Smoothing of algebraic cycles of small dimensions, Amer. J. Math. 90 (1968) 1-54.
- [6] C. Horst, Über Bilder projektiv-algebraischer Räume, J. Reine Angew. Math. 324 (1981) 136–140.
- [7] B.G. Moĭšezon, On *n*-dimensional compact complex manifolds having *n* algebraically independent meromorphic functions, Amer. Math. Soc. Transl. 63 (1967) 51–177.
- [8] R. Remmert, T. van de Ven, Über holomorphe Abbildungen projektiv-algebraischer Mannigfaltigkeiten auf komplexe Räume, Math. Ann. 142 (1961) 453–486.
- [9] I.R. Shafarevich, Basic Algebraic Geometry, Die Grundlehren der Mathematischen Wissenschaften, Band 213, Springer-Verlag, New York-Heidelberg, 1974
- [10] J. Varouchas, Stabilité de la classe des variétés kählériennes par certains morphismes propres, Invent. Math. 77 (1) (1984) 117-127.
- [11] J. Varouchas, Kähler spaces and proper open morphisms, Math. Ann. 283 (1) (1989) 13-52.
- [12] H. Whitney, Complex Analytic Varieties, Addison-Wesley Publishing Co., Reading, MA, 1972.