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We present a formula for the degree of the discriminant of a smooth projective toric variety
associated to a lattice polytope P , in terms of the number of integral points in the interior
of dilates of faces of dimension greater or equal than � dim P
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r é s u m é

Nous donnons une formule pour le degré du discriminant d’une variété torique projective
non singulière associée à un polytope entier P , en terme du nombre de points entiers des
intérieurs de dilatations de faces de dimension supérieure ou égale à � dim P

2 �.
© 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

The relation between the volume and the number of integral points of a lattice polytope P ⊂ R
n has a long history. Here,

a lattice polytope is a polytope whose vertices are integral, i.e. in Z
n . The Ehrhart polynomial [6] ehrP (t) is the polynomial

of degree dim(P ) in one variable t such that the number of integral points in t P is equal to ehrP (t) when t is a non-negative
integer. On the other hand, by Ehrhart–Macdonald reciprocity, for t a positive integer, ehrP (−t) equals (−1)dim(P ) times the
number of integral points in the relative interior of t P . The leading coefficient of these polynomials equals 1/dim(P )! times
the lattice volume VolZ(P ) of P . (The volume VolZ is normalized so that the volume of the fundamental parallelepiped is
dim(P )!.)

An n-dimensional lattice polytope P with N + 1 integral points defines an embedded projective toric variety M P ⊂ P
N .

The polytope P is called smooth (or Delzant) when M P is nonsingular, which implies that P is simple and the primitive
vectors on the n edges emanating from each vertex form a basis of Zn . The dual projective variety M∨

P ⊂ (PN )∨ consisting
of the closure of the locus of those hyperplanes that intersect M P non-transversally is generically a hypersurface. When this
is the case, its degree equals
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c(P ) =
n∑

p=0

(−1)n−p(p + 1)
∑

F∈Fp(P )

VolZ(F ), (1)

where Fp(P ) denotes the subset of p-dimensional faces of P [7, Th. 28, Ch. 9.2]. In fact c(P ) equals the top Chern class
of the first jet bundle of the embedding, and the lattice volumes in (1) occur as combinatorial translations of intersection
products of line bundles on M P .

In this Note, our main result, Theorem 3.1, gives a new representation of c(P ) for any simple n-dimensional lattice
polytope P in terms of the number of integral points in the interior of dilates of faces of dimension greater or equal than
� n

2 �.
The search for this representation was motivated by the question by Batyrev and Nill raised in [1], whether a lattice

polytope with sufficiently large dilates without interior lattice points necessarily has a Cayley structure. While this question
was answered affirmatively in [8], it is in general still open what ‘sufficiently large’ precisely means. In the smooth case,
this has recently been clarified in [5, Th. 2.1(i)]: if the n

2 + 1 dilate of a smooth polytope P does not have interior lattice
points, then c(P ) = 0, so M∨

P is not a hypersurface (M P is dual defective), and P admits a (strict) Cayley structure (cf. [4]).
The Ehrhart-theoretic proof in [5] relied heavily on non-trivial binomial identities and lacked any general insight in why
n
2 + 1 works. Moreover, the method of proof did not employ Ehrhart reciprocity and did not allow one to deal with lattice
polytopes with interior lattice points.

In Section 2, we provide a general result, Theorem 2.2, on involutions of ‘Dehn–Sommerville type’. The proof of this
formal statement is elementary and short. As our main application we deduce from Ehrhart reciprocity our new formula for
c(P ) valid for any simple lattice polytope (not necessarily smooth). This shows that the surprising fact that c(P ) depends
only on the lattice points of dilates of faces of high dimension holds actually for any simple polytope.

In Section 3, we explain how applying Theorem 2.2 yields the desired direct and conceptual proof of [5, Th. 2.1(i)].
We show in the last section an application of Theorem 2.2 in the realm of symmetric functions. We thank Alain Lascoux

and Jean-Yves Thibon for their explanations about the ubiquitous occurrence of the transformation S in Definition 2.1, see
for example [10].

Finally, let us remark that the method of proof of Theorem 2.2 can also be used to show an expression of the volume of
P in terms of the number of integral points and integral boundary points on � � n

2 �-dilates of P , similar to [9, Th. 2.5].

2. An involution

Definition 2.1. Define the transformation S : Cn+1 → C
n+1 by

S[E0, . . . , En] = [F0, . . . , Fn] with F p =
p∑

j=0

(−1) j
(

n − j

n − p

)
E j .

Then S2 = 1, and we have the identity

n∑
p=0

(−z)p(z + 1)(n−p)E p =
n∑

p=0

zp F p . (2)

Later on, the elements Ei will be themselves functions of other variables.
The definition of S is motivated by the following examples:

Example 1. Let [ f0, . . . , fn] be the f -vector of a simple n-dimensional polytope. Then S([ f0, . . . , fn]) = [ f0, . . . , fn] by
the Dehn–Sommerville equations, see e.g., [2, Th. 5.1]. On the other hand, in the dual situation when P is a simplicial
n-dimensional polytope (i.e., all the facets of P are simplices), S is (up to a sign) precisely the transformation between the
f - and h-vectors, see [12, 8.3].

Example 2. Let P ⊂ R
n be a polytope with integral vertices. Denote by Fk(P ) the set of k-dimensional faces of P and

define E P
k (t) = ∑

F∈Fk(P ) ehrF (t). We obtain an element EP = [E P
0 (t), E P

1 (t), . . . , E P
n (t)] of C

n+1 depending of t . We write

S(EP ) = [F P
1 (t), F P

2 (t), . . . , F P
n (t)].

Assume P is simple. In this case, any face F of P of dimension j � p is contained in precisely
(n− j

n−p

)
faces G of P

of dimension p. Using the inclusion-exclusion formula, we get, for every p = 0, . . . ,n, the extended Dehn–Sommerville
equations

E P
p (−t) =

p∑
j=0

(−1) j
(

n − j

n − p

)
E P

j (t) = F P
p (t).

Thus, for any non-negative integer t , (−1)p F P
p (t) equals the sum of the number of integral points in the relative interior of

the p-dimensional faces of t P . This example is Theorem 5.3 in [2].
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Example 3. The elementary symmetric functions σi(x), x = (x1, . . . , xn), are defined by
∏n

a=1(xaz + 1) = ∑n
i=0 σi(x)zi . If we

start with the sequence E = [σ0(x), . . . , σn(x)], then S(E) gives the sequence of elementary functions on (1 − x1, . . . ,1 − xn).
We clearly see in this case that S is an involution. More generally, let v, w be meromorphic functions of one variable with
v(x)+ w(−x) = 1, write

∏n
a=1(v(xa)z + 1) = ∑n

i=0 V i(x)zi ,
∏n

a=1(w(xa)z + 1) = ∑n
i=0 W i(x)zi . If we start with the sequence

E = [V 0(x), . . . , Vn(x)], then S(E) = [W0(−x), . . . , Wn(−x)].

Let Pn be the space of families [E0(t), . . . , En(t)] of n + 1 polynomials where E j(t) is a polynomial in t of degree less or

equal to j. The transformation S induces a transformation of Pn . We write each element E j(t) = t j

j! v j + lower terms. Define

c(E) =
n∑

p=0

(−1)n−p(p + 1)v p . (3)

Theorem 2.2. Let E = [E0, E1, . . . , En] ∈Pn and SE = [F0, F1, . . . , Fn]. For n odd, and m = (n + 1)/2, then

c(E) =
n∑

p=m

p+1−m∑
i=1

(−1)p+m−i
(

p + 1

m + i

)
i
(

E p(−i) + F p(i)
)
. (4)

For n even, and m = n/2, then

c(E) =
n∑

p=m

p+1−m∑
i=1

(−1)p+1+m−i
((

p + 1

m + i

)
−

(
p + 1

m + i + 1

))
i

2

(
E p(−i) + F p(i)

)
. (5)

Let us give the proof of this identity for n odd, the case n even being similar.
Denote by τ be the translation operator (τh)(t) = h(t + 1). Define ep(t) = t E p(t), a polynomial function of degree p + 1.

Then (τ − 1)p+1ep is just the constant function (p + 1)v p , as can be checked on binomials. Hence, (τ−1 − 1)p+1ep =
(−1)p+1(p + 1)v p . Since translating by τm doesn’t change a constant function, we obtain that

c(E) =
n∑

p=0

(−1)n+1τm(
τ−1 − 1

)p+1
ep(0).

Since τm(τ−1 − 1)p+1 equals

n+1∑
j=0

(
p + 1

j

)
τ− j+m(−1)p+1− j =

m∑
i=−m

(
p + 1

m − i

)
τ i(−1)p+1+i−m,

we get

c(E) =
n∑

p=0

m∑
i=−m

(−1)p+1+i−m
(

p + 1

m − i

)
iE p(i). (6)

Now we write the right-hand side of (4) as

RHS :=
n∑

p=m

p+1−m∑
i=0

(−1)pi coeff
(
(1 − z)p+1, zm+i)(E p(−i) + F p(i)

)
.

If i > p + 1 − m, or p < m, the number i(coeff(1 − z)p+1, zm+i) is equal to 0. Thus, since p + 1 − m � n + 1 − m � m,

RHS = −
m∑

i=0

i
n∑

p=0

coeff
(
(z − 1)p+1, zm+i)(E p(−i) + F p(i)

)
.

By relation (2) we get
∑

p(z − 1)p F p(i) = ∑
p(1 − z)p z(n−p)E p(i); hence,

∑
p(z − 1)p+1 F p(i) = −∑

p(1 − z)p+1z(n−p)E p(i).
We deduce that RHS equals

n∑
p=0

m∑
i=0

(
coeff

(
(z − 1)p+1, zm−(−i))(−i)E p(−i) + coeff

(
(1 − z)p+1, zm+i−(n−p)

)
iE p(i)

)
.

As
( p+1 ) = (p+1), this is equal to the expression of c(E) given in Eq. (6).
m+i−n+p m−i
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3. An application to lattice polytopes

We return to Example 2. Let us denote by I p(i) the number of integral points in the relative interior of i-th multiples of
p-dimensional faces of P .

Theorem 3.1. Let P be an n-dimensional simple lattice polytope. Let

c(P ) =
n∑

p=0

(−1)n−p(p + 1)
∑

F∈Fp(P )

VolZ(F ).

For n odd, and m = (n + 1)/2, then

c(P ) =
n∑

p=m

p+1−m∑
i=1

(−1)m−i
(

p + 1

m + i

)
2i I p(i).

For n even, and m = n/2, then

c(P ) =
n∑

p=m

p+1−m∑
i=1

(−1)m+1−i
((

p + 1

m + i

)
−

(
p + 1

m + i + 1

))
i I p(i).

This result follows from Theorem 2.2. Indeed, let EP be the sequence of polynomials described in Example 2. Then, the
coefficient v p equals the normalized volume of the skeleton of p-dimensional faces of P , and F P

p (i) = E P
p (−i) = (−1)p I p(i).

In particular, we get the following alternative proof of [5, Th. 2.1(i)]. Assume In(i) = ehrP (−i) = 0 for any positive integer
i � n

2 + 1. For simplicity, take n odd. So, the polytope i P has no integral interior points for i = 1,2, . . . ,m = n+1
2 . The

monotonicity theorem of Stanley [11] implies that any face of codimension k of P has no integral interior points for i =
1, . . . ,m − k. Thus we obtain from (4) that c(P ) = c(E) = 0. If P is smooth, then this implies that M P is dual defective.

4. An identity of symmetric functions

Let

V (s,x)(t) = ets∏n
a=1(−txa)

, B(s,x)(t) = ets∏n
a=1(1 − etxa )

be meromorphic functions of t depending of the (n + 1) variables s and x. The constant term CTV(s,x) of the Laurent
series (in t) of V (s,x)(t) is (−1)n sn

n!x1x2···xn
. The constant term CTB(s,x) of the Laurent series of B(s,x)(t) is a meromorphic

function of (s, x1, x2, . . . , xn), symmetric in the xi .
Let P ⊂ R

n be an n-dimensional smooth polytope, and let V(P ) be the set of vertices of P . For v a vertex, let
ga,a = 1, . . . ,n, be the primitive generators on the edges of P starting at v . If ξ is generic in the dual space to R

n ,
we can specialize the variables s, xa to 〈v, ξ〉, 〈ga, ξ〉 in V (s,x)(t) and B(s,x)(t) and we obtain meromorphic functions
V v(ξ, t), B v (ξ, t) depending of the vertex v . Then the sum over v ∈ V(P ) of the meromorphic function V v(ξ, t) or B v(ξ, t)
is actually regular at t = 0, and n!∑v V v(ξ, t)(t=0) is the normalized volume of P while

∑
v B v(ξ, t)(t=0) is the number of

integral points in P by Brion’s formulas [3].
Let 1 � p � n, and let

V p(s,x)(t) =
∑

J ,| J |=p

ets∏
a∈ J (−txa)

, B p(s,x)(t) =
∑

J ,| J |=p

ets∏
a∈ J (1 − etxa )

,

where J runs over subsets of cardinal p of {1,2, . . . ,n}. Similarly, the specialization s, xa to 〈v, ξ〉, 〈ga, ξ〉 gives us mero-
morphic functions of (t, ξ), and the sum over the vertices v of the polytope P is regular at t = 0. If we dilate P by i, the
vertices are changed in iv , while the generators ga stay the same. Then the identities of Theorem 3.1 imply in particular
that for n odd,

∑
v∈S(P )

(
n∑

p=0

(−1)n−p(p + 1)!V v,p(ξ, t)

)
(t=0)

=
∑

v∈S(P )

(
n∑

p=m

(−1)p
p+1−m∑

i=1

(−1)m−i
(

p + 1

m + i

)
2iBiv,p(−ξ, t)

)
(t=0)

.

A similar identity holds for n odd. Actually, this identity holds before summing over the vertices v and before specializing,
as an identity for the symmetric functions in xa obtained as the constant term CTBp(s,x) of the Laurent series in t of
B p(s,x)(t).
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Theorem 4.1. For n odd, and m = (n + 1)/2,

n∑
p=0

(−1)n−p(p + 1)!CTV p(s,x) =
n∑

p=m

(−1)p
p+1−m∑

i=1

(−1)m−i
(

p + 1

m + i

)
2iCTBp(−is,x).

For n even, and m = n/2,

n∑
p=0

(−1)n−p(p + 1)!CTV p(s,x) =
n∑

p=m

(−1)p
p+1−m∑

i=1

(−1)m+1−i
((

p + 1

m + i

)
−

(
p + 1

m + i + 1

))
iCTBp(−is,x).

We prove this again as a consequence of Theorem 2.2 using Example 3, and the identity 1
1−exp(x) + 1

1−exp(−x) = 1.
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