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The aim of this Note is to give a sufficient condition in order for a function in the global
domain of definition of the Monge–Ampère operator not to belong to the local domain of
the former in the sense of Cegrell, when one looks at the n-dimensional complex projective
space. Using this result, we show that the subsolution theorem is false for functions in the
local domain of definition of the Monge–Ampère operator on such a projective space.
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r é s u m é

Le but de cet article est de donner une condition suffisante pour qu’une fonction dans le
domaine global de définition de l’opérateur Monge–Ampère n’appartienne pas au domaine
local de celui-ci dans le sens de Cegrell, lorsqu’on se place sur un espace projectif complexe
de dimension n. En utilisant ce résultat, nous montrons que le théorème de sous-solution
est faux pour des fonctions dans le domaine local de définition de l’opérateur Monge–
Ampère sur un tel espace projectif.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let X be a compact Kähler manifold of complex dimension n with a fundamental form ω = ωX . In [14] V. Guedj and
A. Zeriahi have introduced a class E(X,ω) such that for every ϕ ∈ E(X,ω) one can define the complex Monge–Ampère
operator (ddcϕ + ω)n globally. They also proved that for all measures μ on X vanishing on pluripolar sets and μ(X) = 1,
there exists ϕμ ∈ E(X,ω) with supX ϕμ = 0 and (ddcϕμ + ω)n = μ. Next, in [12], S. Dinew has shown that the above
solution ϕμ is unique. Following ideas and techniques of Cegrell [4] we introduce the class

DM Aloc(X,ω) = {
ϕ ∈ P S H−(X,ω): ∀z ∈ X, ∃D � z, with ϕ + θ ∈ E(D) and ω = ddcθ on D

}
where D is an open neighbourhood of z. By [4], it follows that ϕ ∈ DM Aloc(X,ω) if and only if ωn

ϕ = (ddcϕ + ω)n can
be defined locally. In this Note we will give a sufficient condition on μ such that ϕμ /∈ DM Aloc(CP

n,ω). From this result,
we show that for every measure ν on the complex projective space CP

n with ν(CPn) < 1 vanishing on pluripolar sets,

E-mail addresses: mauhai@fpt.vn (L.M. Hai), phhiep_vn@yahoo.com (P.H. Hiep), ltphudk@gmail.com (N.V. Phu).
1631-073X/$ – see front matter © 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.crma.2012.01.025

http://dx.doi.org/10.1016/j.crma.2012.01.025
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:mauhai@fpt.vn
mailto:phhiep_vn@yahoo.com
mailto:ltphudk@gmail.com
http://dx.doi.org/10.1016/j.crma.2012.01.025


154 L.M. Hai et al. / C. R. Acad. Sci. Paris, Ser. I 350 (2012) 153–156
and for every open set D � CP
n we can find f ∈ L1(ωn) satisfying supp f ⊂ D ,

∫
CP

n f ωn = 1 − ν(CPn) and ϕν+ f ωn /∈
DM Aloc(CP

n,ω). Note that in the case of hyperconvex domains, the subsolution theorem is valid for the class DM Aloc
(see [1]). However, at the end of the Note, we show that the subsolution theorem is false for the class DM Aloc(CP

n,ω).

2. Preliminaries

In this section we recall the class E(X,ω) introduced and investigated by V.C. Guedj and A. Zeriahi recently (see [14]).
Let X be a compact Kähler manifold of complex dimension n and ω be a positive closed (1,1)-current such that∫

X ωn = 1. We refer readers to paper [13] about the notion of ω-plurisubharmonic functions. Assume that ϕ is an
ω-plurisubharmonic function. We use the notation ωϕ = ddcϕ + ω. By the results of [2] the Monge–Ampère operator
ωn

ϕ = (ddcϕ + ω)n = ωϕ ∧ · · · ∧ ωϕ is well defined for bounded ω-psh functions. From [14] we know that the sequence
of measures 1{ϕ>− j}(ddc max(ϕ,− j) + ω)n is increasing and one defines

E(X,ω) =
{
ϕ ∈ P S H(X,ω): lim

j→∞

∫
X

1{ϕ>− j}
(
ddc max(ϕ,− j) + ω

)n =
∫
X

ωn
}
.

Then one defines ωn
ϕ = (ddcϕ + ω)n = lim j→∞ 1{ϕ>− j}(ddc max(ϕ,− j) + ω)n . Note that Monge–Ampère measures of func-

tions from E(X,ω) do not charge pluripolar sets. We refer to [3,8–11,16–18] for further information about the complex
Monge–Ampère equation.

3. Auxiliary results

This section is devoted to present some auxiliary results which are needed for the main results in the next section.

Proposition 3.1. Let Ω be a hyperconvex domain in C
n and u ∈ E(Ω), v ∈ P S H−(Ω),α ∈ (0,1) satisfying u � −|v|α . Then u ∈

Ea(Ω), where Ea(Ω) denotes the set of u ∈ E(Ω) such that (ddcu)n vanishes on pluripolar sets of Ω .

Proof. We may assume that u ∈ F(Ω). Assume that E is a compact subset in {v = −∞}. It suffices to prove that∫
E(ddcu)n = 0.

By Lemma 4.3 in [1] there exists uE ∈ F(Ω) such that uE � u and (ddcuE)n = 1E (ddcu)n . We show that uE = 0. Take

ε > 0 and put ũ = max(uE , εv). Then ũ � uE and ũ = uE on the set {v < −( 1
ε )

1
1−α }. It follows that (ddcũ)n = (ddcuE)n =

1E (ddcu)n , on the set {v < −( 1
ε )

1
1−α }. Thus we infer that (ddcũ)n � (ddcuE )n on Ω . On the other hand, since

∫
Ω

(ddcũ)n �∫
Ω

(ddcuE )n it follows that (ddcũ)n = (ddcuE )n . Proposition 3.1 in [15] implies that uE = ũ � εv (see also Theorem 3.15
in [5]). Letting ε → 0 we are done. The proof is complete. �
Proposition 3.2. Let Ω be a hyperconvex domain in C

n and u ∈ Ea(Ω). Then for every compact set K � Ω and t > 0 the following
holds:

cap
({u < −t} ∩ K

) = o(1)

tn
.

Proof. By [4], we can choose a function ũ ∈F(Ω) such that ũ � u on Ω and ũ = u on K . On the other hand, Lemma 4.1 in
[1] implies that ũ ∈Fa(Ω) where Fa(Ω) is the set of functions u ∈F(Ω) such that (ddcu)n vanishes on pluripolar sets. By
the proof of Proposition 3.4 in [6], we get

cap
({u < −t} ∩ K

)
� cap

({ũ < −t})� 2n
∫
{ũ<− t

2 }(ddcũ)n

tn
,

and the proof follows. �
Corollary 3.3. Take α1, . . . ,αk ∈ (0,1] satisfying 1

α1
+ · · · + 1

αk
� n with 1 � k < n and put

�n(0, r) = {
z ∈C

n: |z1| < r, . . . , |zn| < r
}
, ∀r > 0.

Then the function u(z) = max(−| ln |z1||α1 , . . . ,−| ln |zk||αk ) /∈ E(�n(0, r)) whenever 0 < r < 1.

Proof. For t � 1 and 	 < r, we have

cap
({u < −t} ∩ �n(0,	)

) = cap(�	)n−k

t
1
α1

+···+ 1
αk

�
cap(�	)n−k

tn
.

Assume that u ∈ E(�n(0, r)). Then u ∈ Ea(�n(0, r)) and Proposition 3.2 implies that cap({u < −t} ∩ �n(0,	)) = o(1)
tn for

some 	 < r. We get a contradiction and the proof follows. �
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4. Main results

Assume that Ω is a hyperconvex domain in X . This means that Ω is biholomorphic to a hyperconvex domain in C
n . Let

μ be a finite positive Borel measure on X vanishing on pluripolar sets. Then from Lemma 5.14 in [4] there exists a function
ϕμ,Ω ∈Fa(Ω) such that (ddcϕμ,Ω)n = μ. In order to obtain the main result of this section, we need the following:

Proposition 4.1. Assume that ω = ddcθ on Ω with θ ∈ P S H− ∩ L∞(Ω), where Ω is a hyperconvex domain in X. Then for every
ϕ ∈ E(X,ω) the following holds: ϕ|Ω + θ � ϕμ,Ω .

Proof. Put ϕ j = max(ϕ,− j) and μ = ωn
ϕ . Then 1{ϕ>− j}(ddcϕ j + ω)n ↗ μ on X . Choose ψ j ∈Fa(Ω) such that

(
ddcψ j

)n = 1{ϕ>− j}
(
ddcϕ j + ω

)n ↗ μ = (
ddcϕμ,Ω

)n
on Ω .

Using the comparison principle (see Theorem 5.15 in [4]), we have ψ j ↘ ϕμ,Ω on Ω . We have (ddc(ϕ j + θ))n =
(ddcϕ j + ω)n � (ddcψ j)

n . Using the comparison principle, it follows that ϕ j + θ � ψ j on Ω . Letting j → ∞ we get
ϕ|Ω + θ � ϕμ,Ω and the desired conclusion follows. �

We now state and prove our main result:

Theorem 4.2. Let (CPn,ω) be the complex projective space, where ω is the Fubini–Study form. Take h /∈ E(�n(0, r)) (according to
Corollary 3.3). Then if

ϕμ,�n(0,r) � A max
(
log |z1|,h(z2, . . . , zn)

) + C,

for suitable constants A > 1 and C > 0, we have ϕμ /∈ DM Aloc(CP
n,ω).

Proof. Put z′ = (z2, . . . , zn). According to ideas exposed in [7] we show that ϕμ(z) � 1
4 (A − 1)h(z′) + C1, on �n(0, r), where

C1 is a constant. Let θ = 1
2 log(1 + |z|2) ∈ P S H ∩ C∞(Cn) such that ω = ddcθ . For each |z′| < r, put

uz′(z1) = ϕμ

(
z1, z′) + 1

2
log

(
1 + |z1|2 + ∣∣z′∣∣2)

and tz′ = eh(z′) . Since uz′ ∈L(C), we have
∫
{z1∈C} �uz′ � 1. If |z1|� tz′ , then by Proposition 4.1

uz′(z1) � ϕμ,�n(0,r) � A max
(
log tz′ ,h

(
z′)) + C = Ah

(
z′) + C � 1

4
(A − 1)h

(
z′) + C1.

Hence, taking C1 � C we are done. Assume now that tz′ < |z1| < r. Since {ζ ∈ C: |ζ | < r} ⊂ {ζ ∈ C: |ζ − z1| < 2r} ⊂ {ζ ∈ C:
|ζ | < 3r}, the Jensen formula implies

uz′(z1) �
1

π(2r)2

∫
{|ζ−z1|<2r}

uz′(ζ )dV 2(ζ ) � 1

4

1

πr2

∫
{|ζ |<r}

uz′(ζ )dV 2(ζ ) + 1

2
log

(
1 + (n + 8)r2)

� 1

4

[
1

2πr

∫
|ζ |=r

uz′(ζ )dσ(ζ ) − 1

2πtz′

∫
|ζ |=tz′

uz′(ζ )dσ(ζ ) + 1

2πtz′

∫
|ζ |=tz′

uz′(ζ )dσ(ζ )

]
+ 1

2
log

(
1 + (n + 8)r2)

� 1

4

[ ∫
{|ζ |<r}

log
r

tz′
�uz′ + Ah

(
z′) + C

]
+ 1

2
log

(
1 + (n + 8)r2)

� 1

4

[
log

r

|tz′ | + Ah
(
z′) + C

]
+ 1

2
log

(
1 + (n + 8)r2)

= 1

4
(A − 1)h

(
z′) + 1

4
[log r + C] + 1

2
log

(
1 + (n + 8)r2) � 1

4
(A − 1)h

(
z′) + C1.

Hence, ϕμ(z) � 1
4 (A −1)h(z′)+ C1 on �n(0, r). However, since h /∈ E(�n(0, r)) it follows that ϕμ /∈ E(�n(0, r)) and the proof

of the theorem is complete. �
From the above theorem we get the following:

Corollary 4.3. Let ν be a measure on CP
n vanishing on pluripolar sets and satisfying ν(CPn) < 1. Then for every open subset D �CP

n

there exists a function f ∈ L1(ωn) satisfying supp f ⊂ D,
∫

n f ωn = 1 − ν(CPn) and ϕν+ f ωn /∈ DM Aloc(CP
n,ω).
CP
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Proof. Without loss of generality we may assume that D = �n(0, r0) with 0 < r0 < 1. Put

Φ(z) = ln
(|z1|2 + · · · + |zn−1|2 + e−| ln |zn|| 1

2 )
.

It follows that Φ ∈ P S H ∩ C∞(�n(0,1) \ ⋃n
j=1{z j = 0}). From the obvious bound

Φ(z) = max
(
ln |z1|, . . . , ln |zn−1|,−

∣∣ln |zn|
∣∣ 1

2
) + O (1)

and from Proposition 3.1 we infer that Φ ∈ Ea(�n(0,1)). On the other hand, as (ddcΦ)n|⋃n
j=1{z j=0} = 0, it follows that

(
ddcΦ

)n = 1{�n(0,1)\⋃n
j=1{z j=0}}

(
ddcΦ

)n = gωn.

Since
∫
�n(0,r)(ddcΦ)n → 0 as r → 0, we can choose A > 1 and r1 < r0 such that An

∫
�n(0,r1)

(ddcΦ)n = 1 − ν(CPn). Put μ =
ν + An1�n(0,r1)(ddcΦ)n , where 1E is the characteristic function of E . We will show that ϕμ /∈ DM Aloc(CP

n,ω). Indeed, we
have (ddcϕμ,�n(0,r1))

n � (ddc(AΦ))n , on �n(0, r1). The comparison principle implies that ϕμ,�n(0,r1) � AΦ− inf∂�n(0,r1) AΦ =
AΦ + C . On the other hand, by Corollary 3.3, we have

h
(
z′) = max

(
ln |z2|, . . . , ln |zn−1|,−

∣∣ln |zn|
∣∣ 1

2
)

/∈ E
(�n(0, r1)

)
.

Now applying Theorem 4.2 we get ϕμ /∈ DM Aloc(CP
n,ω) and the desired conclusion follows. �

Remark 4.4. Let ω be a Fubini–Study form on CP
n . Now we construct a measure μ on CP

n and a function ψ ∈
P S H(CPn,ω) ∩ L∞

loc(CP
n\{0}) (by the results of J.-P. Demailly in [10] we know that ψ ∈ DM Aloc(CP

n,ω)) such that
μ � C(ddcψ + ω)n for some constant C > 1 and (ddcψ + ω)n vanishes on pluripolar sets but ϕμ /∈ DM Aloc(CP

n,ω). This
shows that the subsolution theorem is false for the class DM Aloc(CP

n,ω).

Consider hn ∈L(C) by hn(zn) = ln |zn| if |zn| � 1
e and hn(zn) = −| ln |zn|| 1

2 if |zn| � 1
e . Set ψ(z) = max(ln |z1|, . . . , ln |zn−1|,

hn(zn)) − 1
2 ln(|z|2 + 1) if z ∈ C

n and ψ(z) = lim supw∈Cn, w→z ψ(w) if z ∈ CP
n\Cn . We have ψ ∈ P S H(CPn,ω) ∩

L∞
loc(CP

n\{0}). By Proposition 3.1, we infer that ψ ∈ Ea(Cn). As in Corollary 4.3 we choose A > 1 and r > 0 such that
An

∫
�n(0,r)(ddcψ + ω)n = 1. Set μ = An1�n(0,r)(ddcψ + ω)n . From Theorem 4.2 we get ϕμ /∈ DM Aloc(CP

n,ω).
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