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We study Lusztig’s t-analog of weight multiplicities, or affine Kostka–Foulkes polynomials,
associated to level one representations of twisted affine Kac–Moody algebras. We obtain
an explicit closed form expression for the unique t-string function, using constant term
identities of Macdonald and Cherednik. This extends previous work on t-string functions
for the untwisted simply-laced affine Kac–Moody algebras.
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r é s u m é

On étudie le t-analogue, d’après Lusztig, des multiplicités des poids, c’est-à-dire les
polynômes de Kostka–Foulkes affines, associés aux représentations du niveau un des
algèbres de Kac–Moody affines tordues. On obtient une expression explicite pour l’unique
t-fonction de corde, en utilisant les identités de Macdonald et Cherednik. Cela étend des
travaux précédents sur les t-fonctions de corde pour les algèbres de Kac–Moody affines
non-tordues de type A-D-E.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let g be a twisted affine Kac–Moody algebra of rank l + 1 (l � 1). Let its root space decomposition be given by

g = h⊕
⊕

α∈�+
(gα ⊕ g−α)

where �+ is the set of positive roots, and let multα := dim(gα) be the root multiplicity of α. We let ḡ denote the underlying
finite dimensional simple Lie algebra of rank l [4].

For a dominant integral weight λ, let L(λ) denote the irreducible g-module of highest weight λ. The L(λ) are integrable
g-modules in category O. Their formal characters are given by the Kac–Weyl character formula.

Now, let t be an indeterminate. In this Note, we study Lusztig’s t-analog of weight multiplicity (or affine Kostka–Foulkes
polynomial) Kλμ(t). Given a dominant weight λ of positive level, and a dominant weight μ of L(λ), Kλμ(t) is defined to be
the following alternating sum over the Weyl group W of g:
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Kλμ(t) :=
∑

w∈W

ε(w)P
(

w(λ + ρ) − (μ + ρ); t
)

where ε(w) is the sign of w , and P(β; t) is the t-analog of the Kostant partition function of g, defined to be the coefficient
of eβ in the product

∏
α∈�+ (1 − teα)−multα .

The Kλμ(t) have several important properties [2,7,8]: (a) they are the transition coefficients between the bases of affine
Hall–Littlewood functions and the formal characters of the L(λ), (b) they are polynomials with non-negative integral coeffi-
cients, and (c) Kλμ(1) = dim L(λ)μ .

Let δ be the null root of g, and let μ now denote a maximal dominant weight of L(λ). To understand the struc-
ture of the module L(λ), one studies the generating functions of its weight multiplicities along δ-strings: aλ

μ(q) :=∑
k�0 dim(L(λ)μ−kδ)qk . These are (up to a factor of a power of q) the string functions of the module L(λ), and are known to

be modular forms for certain congruence subgroups of SL2Z [4]. Now for the t-analog, in view of property (c) above, it is
natural to consider the generating function

aλ
μ(t,q) :=

∑

k�0

Kλ,μ−kδ(t)q
k

of the Kλμ(t) along δ-strings. Following [8], the aλ
μ(t,q) will be referred to as t-string functions.

Among the nontrivial irreducible integrable modules in category O, the basic representation L(Λ0) is the most important.
For the affine Lie algebras which are (untwisted) simply-laced, or twisted, all level one irreducible integrable representations
in category O are obtained from the basic representation by the action of an automorphism of the affine Dynkin diagram,
followed by tensoring with a one-dimensional representation. The following classical result describes the string functions of
the basic representation [5]:

Theorem 1.1. If g is an untwisted simply-laced affine Lie algebra, or a twisted affine algebra, the basic representation admits a unique
string function aΛ0

Λ0
(q), given by

aΛ0
Λ0

(q) =
∞∏

n=1

(
1 − qn)−mult(nδ)

.

The remaining affine algebras are the untwisted ones of types B, C, F , G . In these cases, there are multiple string func-
tions associated with the basic representation, and their description is somewhat more involved [5].

Now, the t-analogs of string functions were studied in [8], where they were related to the constant term identities arising
in the theory of Macdonald polynomials, via the following observation:

Lemma 1.2. aλ
μ(t,q) = ct(�̃e−μχλ) where ct is the constant term functional, �̃ is the modified Cherednik kernel and χλ is the formal

character of the representation L(λ).

When g is untwisted simply-laced, the t-string function aΛ0
Λ0

(t,q) of the basic representation can be computed in closed
form using the above lemma and Cherednik’s Macdonald–Mehta constant term identity [8]:

Theorem 1.3. Let g be an untwisted simply-laced affine algebra, i.e., g = A(1)

l (l � 1), D(1)

l (l � 4) or E(1)

l (l = 6,7,8). Then, we have

aΛ0
Λ0

(t,q) =
∞∏

n=1

l∏

i=1

(
1 − tei+1qn)−1

where e1, . . . , el are the exponents of ḡ.

The main theorem of this article is the corresponding result for the twisted affine algebras.

2. The main theorem

For later use in stating our main theorem, we first recall relevant facts concerning generalized exponents. Let V = V (λ)

be the irreducible finite dimensional representation with highest weight λ of a finite dimensional simple Lie algebra ḡ. We
fix a triangular decomposition ḡ = n̄− ⊕ h̄ ⊕ n̄+ , and choose a regular (principal) nilpotent element E ∈ n̄+ . Let V 0 denote
the zero weight space of V , and define the Brylinski–Kostant filtration [1,6] of V 0 via F (p)(V 0) := ker(E p) ∩ V 0 for p � 0.
Then the multiset E(V ) of generalized exponents of V contains each p � 0 as many times as dim(F (p+1)(V 0)/F (p)(V 0)).
In other words, the Hilbert series of the Brylinski–Kostant filtration of V 0 is the generating series of generalized exponents
of V :
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∑

p�0

dim
(
F (p+1)(V 0)/F (p)(V 0)

)
t p =

∑

k∈E(V )

tk.

This generating series is also equal to the Kostka–Foulkes polynomial Kλ,0(t) of the Lie algebra ḡ.
The following classical result (see, for e.g., [3]) provides a purely combinatorial characterization of generalized exponents

in important special cases, and is one of the ingredients in the proof of our main theorem:

Proposition 2.1. Let ḡ be a finite dimensional simple Lie algebra, and let θl and θs denote its highest long and short roots respectively
(taking these to be equal if there is only one root length). For each k � 1, let n(k) (resp. ns(k)) denote the number of roots (resp.
short roots) of height k. Then, for each j � 1, the number of times j occurs as a generalized exponent of V (θl) (resp. V (θs)) equals
n( j) − n( j + 1) (resp. ns( j) − ns( j + 1)).

Now, let g be a twisted affine algebra of type X (r)
N ; here XN is a simply laced (A-D-E) Dynkin diagram of finite type,

with a diagram automorphism σ of order r (r = 2 or 3). Let m denote the finite dimensional simple Lie algebra with Dynkin
diagram XN , and let σ also denote the automorphism of m induced by the diagram automorphism. For each k ∈ Z, let
mk be the eigenspace of σ for the eigenvalue exp(2πki/r). Since σ acts diagonalizably on m, we have a Z/rZ gradation:
m = ⊕

j∈Z/rZm j . Further, if h is a Cartan subalgebra of m, let h j := h∩m j for all j ∈ Z.
The Lie algebra g has a realization as the universal central extension of an equivariant loop algebra [4, Chapter 8]:

g = ⊕
k∈Z(zk ⊗mk)⊕CK ⊕Cd where K is the canonical central element, d is the degree derivation and z is an indeterminate

(the loop coordinate). There is a natural Z-grading g = ⊕
j∈Z g j with g0 = m0 +CK +Cd and g j = z j ⊗m j for j �= 0. This has

the following properties [4]: (a) g0 is reductive, with semisimple part m0, (b) for all j �= 0, g j is an irreducible m0-module

(say, with highest weight λ j ), (c) if g �= A(2)

2l , then λ j = θl (resp. θs) when r| j (resp. r � j), where θl (resp. θs) is the highest

long (resp. short) root of m0, and (d) if g = A(2)

2l , then λ j = θl (resp. 2θs) when r| j (resp. r � j).
Let En denote the multiset of generalized exponents of the m0-module gn for n > 0. The main result of this Note is the

following:

Theorem 2.2. Let g be a twisted affine algebra. The t-string function of the basic representation of g is given by

aΛ0
Λ0

(t,q) =
∞∏

n=1

∏

e∈En

(
1 − te+1qn)−1

.

We observe from the definitions that the cardinality of En is the dimension of the zero weight space of gn as an m0-
module, i.e., |En| = dim(zn ⊗ hn). Since zn ⊗ hn is the root space of g corresponding to the imaginary root nδ, we obtain
|En| = mult(nδ). Thus at t = 1, Theorem 2.2 reduces to the classical result of Theorem 1.1.

We also remark that when g is simply laced, the g j ( j > 0) are all isomorphic to the adjoint representation of m0.
In this case, the generalized exponents coincide with the usual exponents of m0. Theorem 2.2 is thus a generalization of
Theorem 1.3.

Next, we derive an interesting corollary. If g is an affine Kac–Moody algebra of rank l + 1, and ei , f i (i = 0, . . . , l) are
the Chevalley generators, the principal Heisenberg subalgebra s of g is defined to be s := {x ∈ g: [x,∑l

i=0 ei] ∈ CK } where
K is the central element of g [4]. The principal gradation of g induces a gradation s = ⊕

j∈Z s j . The exponents of the affine
algebra g are the elements of the (infinite) multiset of nonzero integers in which each j occurs dim s j times. We now have
the following corollary to Theorem 2.2, which relates a certain specialization of the basic t-string function to the exponents
of the affine algebra and its underlying finite dimensional simple Lie algebra:

Corollary 2.3. Let g be a twisted affine algebra or an untwisted simply-laced affine algebra, with Coxeter number h. Let ḡ be its
underlying finite dimensional simple Lie algebra. Then

aΛ0
Λ0

(
q,qh) =

∏
ē∈E(ḡ)(1 − qē+1)

∏
e∈E(g),e>0(1 − qe+1)

(1)

where E(ḡ) and E(g) are the multisets of exponents of ḡ and g respectively.

The details of the proofs of Theorem 2.2 and the corollary will appear elsewhere. We content ourselves here with some
brief remarks about the proof. As in [8], the starting point is Lemma 1.2. For g not of type A(2)

2l , we use Cherednik’s
computation of the Macdonald–Mehta type constant term, together with the combinatorial characterization of generalized
exponents given by Proposition 2.1. For the g = A(2)

2l case, we first derive a Macdonald–Mehta type identity by suitably
specializing the Macdonald constant term for the non-reduced affine root system of type (C∨

n , Cn), and use this to complete
the proof.
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