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RESUME

Un exemple important de réseaux de régulation biologique est constitué par les réseaux
génétiques de régulation booléens probabilistes a seuil, qui sont trés utiles pour expliquer
les mécanismes précis du controle génétique, en particulier. Cette Note montre les relations
mathématiques existant entre sensibilité paramétrique de I'entropie évolutionnaire et
frustration du réseau, dans le contexte particulier de ces réseaux de régulation génétique.

© 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Since the recent discoveries on the role of small RNAs (like microRNAs), the problem of evolution of robustness of genetic
networks caused by endogenous or exogenous parameter variations has been posed. We will solve partly the question about
the parameter sensitivity of the evolutionary entropy [10] of the network by relating it to the network frustration.

2. Applications to genetic threshold Boolean random regulatory networks (getBren)

We will now apply the results proved in [10] to the biological regulatory networks, using the formalism of the genetic
threshold Boolean regulatory networks (getBren), which is the translation, in the genetic language, of the Hopfield networks
[11,12].
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Fig. 1. A getBren composed of 5 genes with its interaction digraph and states (green for 1; red for 0) in case of sequential iteration under Boolean
deterministic rule, with thresholds 6¢1, ..., 65, showing the final fixed configuration (11101). (For interpretation of the references to color in this figure,
the reader is referred to the web version of this article.)

2.1. Genetic regulatory networks

The expression of a gene, i.e., the production of a protein this gene encodes, is regulated by the activity of other pro-
teins. We now describe the classical Boolean formalism [1-13] used for modelling genetic networks, before applying it to
particular networks.

2.2. Genetic threshold Boolean random regulatory networks (getBren) definition

Any random automaton i of N owns at time t a state x;(t) valued in {0, 1}, O (resp. 1) meaning that gene i is inactivated
(resp. activated). The global state of the getBren at time ¢, called configuration in the sequel, is then defined by: x(t) =
i (0)iep1,ny € 2 = {0, 1}™.

A getBren N of size n is a triplet (W, ®, P) where:

- W is a matrix of order n, where the coefficient w;j € R represents the interaction weight gene j has on gene i.
Sign(W) = (sign(wjj)) is the adjacency matrix of the interaction graph G.

- O is an activation threshold vector of dimension n, its component #; being the activation threshold attributed to au-
tomaton i.

- M:P(£2) — [0, 1]™™ (where P(£2) is the set of subsets of £2 and m = 2") is a Markov transition matrix, built from
local probability transitions P; giving the new state of gene i at time t + 1 according to W, @, and configuration x(t) of
N at time t such that: Vy €{0, 1}, B € £2,

Pl ({ie+1) =y IX(t)=ﬂ})=exp[)/<Z Wifﬁf—9i>/T}/[1“Xp[(%""ifﬂf_e")ﬁﬂ’

JeN;
where A is the neighbourhood of gene i in the getBren N, ie., the set of genes j (including eventually i) such that w;; #0,

and P y 1 the probability for gene i of passing to state j, knowing its state 8 on N;. P denotes the transition matrix built

from the Pf y's and depends on the updating mode. For extreme values of the randomness parameter T, we have:
(i) if T =0, the getBren becomes deterministic and the transition can be written as: x;(t + 1) =1, if ZjeM wijXj(t) —

0; > 0; =0, otherwise;
(ii) when T tends to infinity, then Pfy = % and each line of M is the uniform distribution on 2.

2.3. Entropy and robustness in getBrens

Let M = (Myy) denote the Markov transition matrix between the configurations x and y of £2, defined by an updating
mode, and u = (ux) = (L({x}))xes its stationary distribution on £2. The evolutionary entropy H serving as robustness index
can be calculated for a getBren: H = —quyeg xMxy log Myy. In sequential updating mode, where the updating order of
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the nodes is their index order integer, we have, by denoting I ={1,...,i— 1}, N\I ={i,...,n} and identifying x with the
set of indices i such that x; =1:

(XA(N\DIU[yNI] [XA(N\DIU[yNI]
My =[] [P} Liieyy + Pig Ligy)] (1)

and p is classically the Gibbs measure [12] defined by: Vx € 2, ux = exp((ZiEx,l‘ENi wijxixj — 6;)/T)/Z, where Z =
Zyeg eXp((Zjey,kEJ\fj Wikyjyk —0j)/T). When T =0, p is concentrated on the attractors of the deterministic dynam-
ics and H =0; when T = 400, i is scattered uniformly over §2 and H =nlog2. Let define in this case two characteristics
of the attraction basin B(A) of an attractor A (i.e., the set of all initial conditions having A as asymptotic behaviour), its
Attraction Basin Relative Size ABRS(A) = erB(A)UA Ux = (A) and its Average Diameter (AD), i.e., the average number
of transitions needed to reach A from an initial configuration lying in B(A). We can estimate H from attractor entropy
Eattractor: Eattractor = — Zk:l,ng" (Ag)log w(Ay) = — Zk:l. mg2n ABRS(A) log ABRS(Ay). In the next Proposition 1, Egtractor
plays the same role as dg(Px,y, itx ® i4y) in Proposition 1 of [10].

Proposition 1. Let suppose that the invariant measure 1 is uniform over all the m < 2" attractors of the deterministic dynamics on
the configuration space $2. Then, if for any configuration i of an attractor A, Pfy is defined for any B € A with a local temperature Ty

sufficiently large such as P, is scattered uniformly over B(A) U A in §2, such as ABRS(Ay) = | B(Ay) U Ag|/2", we have:

H~ " ABRS(A)log(2" ABRS(Ay)) =nlog2 — Eattractor = Hyu — Eattractor- )
k=1,m

Proof. For any k =1,m, all transition matrix coefficients My, equal to 1/|B(Ak) U Ak| on lines corresponding to configura-
tions x belonging to B(Ay) UAy and p is uniform over £2. Then we can write: H = —|B(A)UAk|/2" 3" _; ,, log(2" /(2" | B(Ay)
U Ag[)) =nlog2 — Eqttractor- O

We will now calculate in the framework of a getBren the sensitivity of the entropy H, to a variation of the parameter
weights w;;. Let us suppose for the sake of simplicity that w;; =0 and 6; =0 for all the genes i and that w;; = ajjw, where
«jj is the sign of the interaction between genes i and j, equal to 0, —1 or 41, and w denotes the supposed same common
absolute value of all weights. Random function U is defined on £ by: U(x) = Zi,je{l,n}aijxixj = Q4+ (N) — F(x), where
Q4+ (N) is the number of positive edges in interaction graph G of the network N and F(x) the global self-frustration of x,
i.e., the number of pairs (i, j) where the values of x; and x; are contradictory with the sign «;; of the interaction between
genes i and j: F(x) = Zi,je{l,n} Fij(x), where Fj; is the local self-frustration [9] of the pair (i, j) defined by: Fjj(x) =1, if
ajj =1, x;xj =0 or ajj = —1, x;xj = 1, and F;j(x) =0, elsewhere. Then, we have:

Proposition 2. In sequential updating mode, we have: 0H,, /dw = —wVarU = —wVarF and 9H, /9T = Var F/T3, implying that
the robustness increases when dH,, /3T decreases, then when the temperature increases, ju tending in these circumstances to the
uniform distribution over 2.

Proof. We have: H, = -, ixlog iy, then dH, /ow =—)" o 0px/dWlog iy — D o HxD log tix/dw, where duyx/dw
= 0[exp((Xjex, jen; WiiXiXj =00/ T)/ [ ye eXP((Xjey ken; Wiy iVe—0)/TN/OW. I Z =3 e exp((XL jey ke WikV jYk—
0;)/T) and 9Z/dw =3 0 (D icy jen; @ijYi¥j/T)Z Ly, then:

8Mx/8w=[8|:exp<< 3 W,'jxixj—9i>/T>]/8W]/Z—exp<< 3 wijxixj—ei>/r>(32/aw)/zz

iex, jeN; iex, jeN;
=< > Olijxixj/T>Mx_ Z( > OlijJ’iJ/j/T>l/~ny=Mx310gl/«x/3w
iex, jeN; YER “iey, jeN;
and
2
3Mx/3WIOng=W< Z Olinin/T> Mx — ZW< Z Olijyz'J/j/T>( Z Oéinin/T)Myle
iex,jeN; yeR icy,jeN; iex, jeN;
—< > ainixj/T>uxlogZ+ Z( > OlijJ’i}’j/T)MyMXIOgZ-

iex,jeN; yeR Niey,jeN;

Hence: H, /0w = —Y o dux/dWIog iy — Y o Uxd10g tx/dW = —WEU?) + W(EU)? — Y ,co dux/dw, but

D ven x/OW = 3D 4o Mx)/dW =0, therefore 0H, /ow =—3", o dux/dWlogux = —wVar(U). O
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By defining now the local cross-frustration G;j(x,y) =1, if ajj =1, xy; =0 or a;j = —1, x;y; =1, and G;;(x) =0,
elsewhere, the global cross-frustration is G(x, y) = Zi,je[l....,n} Gij(x, y).

Proposition 3. In parallel updating mode, we have: dHy/dw = —w Vary G, where Vary is taken for the conditional measure My, =
EXp((Ziex,jey wijxiyj—60i)/T)/ Zyeﬂ exp((Ziex.jey wijXiyj —6)/T).

Proof. The proof is the same as proof of Proposition 2, by replacing F by G. O

Proposition 4. In parallel updating mode, we have: dH/dw = —wVarG + Cov(H, G), where Var and Cov are taken for
random variables G(x,y) and H(x,y) = —MyylogMy, and for the product measure defined by Myyx, Where: [y =
Y yen eXP(Xick jey WiiXi¥j —00)/T)/ Yxeq. yeo eXP((Xicy, jey WiiXiVj —01)/T).

Proof. We have: dH/dw = Y, o (UxdHx/dW + Hyxdpx/dw). Hence, from Proposition 3, we get: dH/dw = —wVarG +
> e Hxdtx /0w, where:

B/LX/E)W:Z[Bexp(( 3 w,-jxiyj—e,-)/r>/aw]/z

yeR iex, jey
—[Zexp(( 3 wijxiyj—9i>/T>}(aZ/aw)/z2,
yESR iex,jey

where Z = erﬂ,yeﬂ eXp((Ziex,jey wijXiyj—0i)/T) and 0Z/0w = erﬂ,yeﬂ (Ziex,jey @ijXiyj/T) eXp((Ziex,jey WijXiyj—
6;)/T), then we have:

3//«x/3W=Z( > Olinin/T>eXP<< > Wijxin—9i>/T>/Z

yeR “iex,jey iex,jey
—hx Y ( > aijxiyj/T)exp« > wijx,-yj—9i>/r)/2=ux(5x(c)—E(G)).
Xe$2,yef2 “iex,jey iex,jey

Finally, we get: 0H/0w = —wVarG + Y, o Hxdux/dw = —wVarG + cov(H,G). O

We have shown, in Propositions 2, 3 and 4, a direct link between the sensitivity to w of H;, and H, and the variability
of the frustration of the network.

3. Conclusion

We have in this article developed explicit relationships between the complexity index H (evolutionary entropy) and the
stability rate R in the particular case of the Markov chain defining the dynamics of a genetic threshold Boolean random
regulatory network (getBren). Eventually, we have given an explicit expression depending on the network frustration for
the sensitivity of the evolutionary entropy H to the variations of the parameters w (weight or interaction parameter) and
T (temperature or stochasticity parameter).
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