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The purpose of this Note is to present a mathematical evidence of the dissipation anomaly
in 3D turbulent flows within a general setting for the study of energy cascade in physical
scales of 3D incompressible flows recently introduced by the authors.
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r é s u m é

Le but de cette Note est de présenter une mise en évidence mathématique de la dissipation
anormale pour des flots turbulents tridimensionnels, dans un cadre général récemment
introduit par les auteurs pour l’étude de la cascade énergétique aux échelles physiques dans
les fluides incompressibles en trois dimensions.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Dissipation anomaly, i.e., non-vanishing of averaged energy dissipation rate in the infinite Reynolds number limit (some-
times referred to as ‘zeroth law of turbulence’), is a key player in both empirical and phenomenological turbulence. On one
hand, documented empirical confirmation dates back at least to Dryden’s experiments on decaying turbulence in wind tun-
nels reported in 1943, and on the other hand, dissipation anomaly was a key postulate in Kolmogorov K41 phenomenology
[11] (see also a discussion in [10,7,13]). K41 predicts existence of energy cascade – a local (in scale) nonlinear transfer of
averaged energy across a range of scales, the so-called inertial range. In addition, the transfer rate/averaged energy flux is
expected to be nearly-constant, and equal to averaged energy dissipation rate. Consequently, dissipation anomaly can be
recast in terms of averaged energy flux as non-vanishing of averaged energy flux in the infinite Reynolds number limit
(across a suitable range of scales).

Onsager in 1945–1949 [12,8] conjectured that irregular/singular solutions to the 3D Euler equations (the inviscid model)
are capable of effectively dissipating all the energy in the flow. More precisely, Onsager conjectured that a minimal spatial
regularity of a (weak) solution to the 3D Euler needed to conserve the energy is of the order of ( 1

3 )+ (the main mathematical

works confirming Onsager’s 1
3 criticality conjecture are [6,2,5,1]), and that in the case the energy is not conserved, the

dissipation due to the singularities – anomalous dissipation – triggers the energy cascade which then continues indefinitely
(unlike in the viscous case, the inertial range is expected to extend all the way to the zero-scale). This offers a way of
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1631-073X/$ – see front matter © 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.crma.2012.01.009

http://dx.doi.org/10.1016/j.crma.2012.01.009
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:zg7c@virginia.edu
http://dx.doi.org/10.1016/j.crma.2012.01.009
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studying dissipation anomaly in terms of vanishing viscosity limits of solutions to the 3D Navier–Stokes equations (NSE)
converging to a singular solution to the 3D Euler exhibiting anomalous dissipation.

In a recent work, the authors introduced a setting for the study of energy cascade in 3D viscous incompressible flows
in physical scales. (The preexisting work on existence of 3D energy cascade [9] took place in the Fourier space.) This led to
a proof – under a suitable condition plausible in the regions of intense fluid activity – of both existence and scale-locality
of the energy cascade in physical scales in decaying turbulence directly from the 3D NSE [3]. The general mathematical
setting is the one of weak solutions satisfying the local energy inequality, and the key ingredient in the proof is suitable
ensemble averaging of the local energy inequality. This method was then adopted to the 3D inviscid flows to show – under
an assumption that the anomalous dissipation in the region of interest is strong enough (with respect to the energy) –
both existence and scale-locality of the energy cascade in the 3D Euler flows extending ad infinitum confirming Onsager’s
predictions [4]. (One should note that the inviscid result is obtained in the setting of (at this point in time) hypothetical
weak solutions to the 3D Euler satisfying the local energy inequality; a natural regularity here is L3-locally in both space
and time.)

The aim of this Note is to briefly review the aforementioned results – providing a unified approach to both viscous and
inviscid cases – and observe that the inviscid result leads to a short proof of dissipation anomaly in this setting. Consider an
L3-strong in the space–time vanishing viscosity limit of weak solutions to the 3D NSE satisfying the local energy inequality
converging to a (hypothetical) L3 in the space–time weak solution to the 3D Euler. Duchon and Robert [5] noticed that
the Euler solution then necessarily satisfies the local energy inequality. In fact, their calculation implies, assuming that
the NSE solutions do not exhibit anomalous dissipation per se, that the local spatiotemporal viscous energy dissipation
rates converge to the local spatiotemporal anomalous dissipation corresponding to the vanishing viscosity Euler solution,
resulting in a local spatiotemporal dissipation anomaly (provided the inviscid anomalous dissipation is strictly positive).
Here, we show that our approach to the study of energy cascade in physical scales of 3D incompressible flows leads to a
scale-to-scale manifestation of spatiotemporal dissipation anomaly. More precisely, denoting the macro-scale in the problem
by R0, it is shown – provided the condition for the inviscid cascade holds – that for every R∗ , 0 < R∗ < R0, there exists
ν∗ positive, such that for any ν , 0 < ν < ν∗ , the averaged energy flux associated with the viscous solution uν is nearly-
constant and comparable to the anomalous dissipation throughout the inertial range delineated by [R∗, R0]. Moreover, the
sufficient condition for the never-ending anomalous energy cascade in the inviscid case triggers the sufficient conditions for
the energy cascade in the vanishing viscosity sequence with ever-expanding inertial ranges.

2. 3D viscous energy cascade revisited

Let x0 be in B(0, R0) (R0 being a given arbitrary length – interpreted as a macro-scale, such that B(0,2R0) is contained
in Ω where Ω is the global spatial domain) and 0 < R � R0. For the exact localization procedure at scale R , around the
point x0 – as well as the precise interpretation of the local (kinetic) energy transfer in this setting – the reader is referred
to [3,4].

Let u be a weak solution to the 3D NSE on Ω × (0,2T ) satisfying the local energy inequality,

ν

∫ ∫
|∇u|2φ �

∫ ∫
1

2
|u|2(∂tφ + ν�φ) +

∫ ∫ (
1

2
|u|2 + p

)
u · ∇φ, (1)

for any non-negative test function φ (e.g., a suitable weak solution). Physically, the term ν
∫∫ |∇u|2φ represents the local

spatiotemporal energy dissipation rate due to viscosity, while a (non-negative) defect in the local energy inequality due to
possible singularities/lack of smoothness can be interpreted as the local spatiotemporal anomalous dissipation. For a refined
cut-off function φ = φx0,R,T defined on B(x0,2R) × (0,2T ) denote by Φx0,R a local inward flux,

Φx0,R(t) = −
∫ (

(u · ∇)u + ∇p
) · uφ dx =

∫ (
1

2
|u|2 + p

)
u · ∇φ dx, (2)

and by Φ̂x0,R a local time-averaged flux per unit mass, Φ̂x0,R,T = 1
T R3

∫
Φx0,R(t). Similarly, denote by êx0,R a local time-

averaged energy and by ε̂x0,R a local time-averaged total (viscosity plus anomalous) energy dissipation rate, all per unit
mass,

êx0,R,T = 1

T R3

∫ ∫
1

2
|u|2φ2δ−1, ε̂x0,R,T = 1

T R3

∫ ∫
1

2
|u|2(∂tφ + ν�φ) + Φ̂x0,R,T (3)

(for a suitable δ, 1
2 < δ � 1).

Also denote by e and ε the time-averaged energy and total energy dissipation rate per unit mass associated to the
macro-scale domain on (0,2T ),

e = ê0,R0,T and ε = ε̂0,R0,T . (4)

In order to connect the inviscid case with the vanishing viscosity limit, we are adopting a slightly different approach
from the one presented in [3] where the defect in the local energy inequality (1) was interpreted as the anomalous energy
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flux due to singularities, while the time interval T was bounded below by R2
0/ν . Here, besides considering total (viscous

plus anomalous) energy dissipation rate, we will be keeping the time scale T independent of ν . However, the calculations
are completely analogous to the ones presented in [3]. In particular, the following version of Theorem 4.1 in [3] holds. For
the precise definition of the ensemble averaging process {〈·〉R}0<R�R0 – with respect to ‘(K1, K2)-covers at scale R ’, the
reader is referred to [4]; here, we briefly present the main idea.

Let K1 and K2 be two positive integers. A cover {B(xi, R)}n
i=1 of B(0, R0) is a (K1, K2)-cover at scale R if (

R0
R )3 � n �

K1(
R0
R )3, and any point x in B(0, R0) is covered by at most K2 balls B(xi,2R). K1 and K2 represent global and local

multiplicities, respectively. For any physical density of interest θ , consider time-averaged, per unit mass – spatially localized
to the cover elements B(xi, R) – local quantities θ̂xi ,R , θ̂xi ,R = 1

T R3

∫∫
θφ

ρ
i (for a suitable ρ , 0 < ρ � 1), and denote by 〈Θ〉R

the ensemble average given by 〈Θ〉R = 1
n

∑n
i=1 θ̂xi ,R . A key observation is that 〈Θ〉R being stable – nearly-independent on a

particular choice of the cover (with the fixed multiplicities K1 and K2) – indicates there are no significant fluctuations of
the sign of the density of θ at scales comparable or greater than R . Consequently, for an a priori sign-varying density (e.g.,
the flux density), the ensemble averaging process acts as a coarse detector of the sign-fluctuations at scale R .

Theorem 2.1. Let τ be a modified Taylor length scale defined by τT = [( R2
0

T + ν) e
ε ]1/2 . There exist positive constants c and K –

depending only on the cover parameters K1 and K2 – such that for any γ in (0,1), the condition τ 2
T <

γ
c R2

0 implies

1

K
(1 − γ )ε � 〈Φ〉R � K (1 + γ )ε (5)

for all R inside the inertial range determined by
[( τ 2

T
γ
c (R2

0+νT )−τ 2
T
νT

)1/2
, R0

]
.

3. 3D inviscid energy cascade

In this section, we recall a sufficient condition for energy cascade in 3D inviscid flows obtained in [4], Section 3. Let u
be a (hypothetical) weak L3 in the space–time solution to the 3D Euler satisfying the local energy inequality,

∫ ∫
1

2
|u|2∂tφ +

∫ ∫ (
1

2
|u|2 + p

)
u · ∇φ = ε(u;φ) � 0 (6)

((ε(u;φ) is the anomalous dissipation associated to the support of φ). Keeping the notation in line with the previous section
– focusing on B(x0, R) – denote by ε̂x0,R,T a local time-averaged anomalous dissipation per unit mass associated to B(x0, R),
and define 〈Φ〉R , e, and ε as in the viscous case, setting ν = 0. In the same spirit, define the anomalous Taylor scale τT by

τT = (
R2

0
T

e
ε )1/2. The main result in [4] states the following.

Theorem 3.1. There exist positive constants c and K – depending only on the cover parameters K1 and K2 – such that for any γ in
(0,1), the condition τ 2

T <
γ
c R2

0 implies

1

K
(1 − γ )ε � 〈Φ〉R � K (1 + γ )ε (7)

for all R inside the inertial range determined by (0, R0].

Note that in the inviscid case, once the energy cascade commences, it continues indefinitely towards the zero-scale as
predicted by Onsager.

4. Dissipation anomaly and energy cascade

Let {uν} be a family of weak solutions to the 3D NSE satisfying the local energy inequality converging strongly in
L3(R3 × (0,2T ))3 to a (hypothetical) weak L3 solution to the 3D Euler u. As mentioned in the Introduction, Duchon and
Robert [5] noticed that the inviscid limit u in this setting also satisfies the local energy inequality (6). A superscript ν will
be used to denote the energy, the flux and the (total) energy dissipation rate corresponding to a solution uν , while the
quantities related to u will be denoted as in the previous section. A straightforward computation – utilizing the identity
p = −R jRk(u juk) on R

3 (Rl denoting the l-th Riesz transform; u = (u1, u2, u3)) and the bound |∇φx,R,t | � C0/R – implies
the following estimate; this is simply a quantitative version of the corresponding calculation in [5] written in our setting.

Lemma 4.1. Let x ∈R
3 , R > 0 and t ∈ (0, T ]. Then,

∣∣Φν
x,R,t − Φx,R,t

∣∣ � c
1

t R4

∥∥uν − u
∥∥3

L3(R3×(0,2T ))3 . (8)
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Theorem 4.1. Suppose that the inviscid cascade condition, τT <
√

γ /cR0 , holds for the inviscid limit u. Then, for every R∗ , 0 < R∗ <

R0 , there exists ν∗ positive, such that for any ν , 0 < ν � ν∗ ,

1

Kγ
ε �

〈
Φν

〉
R � Kγ ε (9)

throughout the inertial range determined by [R∗, R0], where Kγ = K
1−γ .

Proof. Note that the inviscid cascade condition allows us to apply Theorem 3.1 with γ := γ + δ, 0 < δ < cτ 2
T /R2

0 − γ ,
obtaining

1

K
(1 − γ − δ)ε � 〈Φ〉R � K

1 − γ − δ
ε

for any R , 0 < R � R0. On the other hand, (8) implies that for a fixed (K1, K2)-cover

〈
Φν

〉
R → 〈Φ〉R , as ν → 0

uniformly on [R∗, R0] for any R∗ , 0 < R∗ < R0. Combining the two estimates finishes the proof. �
Remark 4.1. In fact, it is plain to verify that for all ν , 0 < ν < ν∗ , the energy cascade

1

K
(1 − γ )εν �

〈
Φν

〉
R � K (1 + γ )εν

holds inside the ever-expanding inertial ranges
[( (τ ν

T )2

γ
c (R2

0+νT )−(τ ν
T )2 νT

)1/2
, R0

]
. This provides an intrinsic version of Theorem 4.1 –

without an explicit reference to the vanishing viscosity limit (of course, εν → ε).
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