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In this Note, a new sharp sufficient condition for exact sparse recovery by �1-penalized
minimization from linear measurements is proposed. The main contribution of this paper
is to show that, for most matrices, this condition is also necessary. Moreover, when
the �1 minimizer is unique, we investigate its sensitivity to the measurements and we
establish that the application associating the measurements to this minimizer is Lipschitz-
continuous.
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r é s u m é

Dans cette Note, une nouvelle condition suffisante pour l’identifiabilité parcimonieuse par
minimisation �1 pénalisée à partir de mesures linéaires est proposée. La contribution
majeure de ce travail est de prouver que pour la plupart des matrices, cette condition
est aussi nécessaire. Par ailleurs, lorsque le minimiseur du problème �1 est unique, sa
sensibilité aux mesures est étudiée et il est montré que l’application qui envoie les mesures
sur ce minimiseur est Lipschitz-continue.

© 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Let x0 ∈ RN be a vector and A be a real matrix with n rows and N columns. Let y0 be n linear measurements of x0, i.e.
y0 = Ax0 ∈ Rn , where typically n < N . In this paper, we propose a necessary and sufficient condition ensuring that x0 can be
recovered from y0 by solving the following optimization problem P1(y0)

min
x∈RN

‖x‖1 such that y = Ax. P1(y)

There is of course a huge literature on the subject, and covering it fairly is beyond the scope of this paper. We restrict our
overview to those works pertaining to ours. For instance, our new condition can be seen as an extension of [6] and [7]. The
geometric interpretations of results are related to the geometry of polytopes previously used by Donoho [2] and Donoho
and Tanner [3] to study �1 minimization. Indeed, in [6], the following optimization problem (the so-called Lasso problem)

min
x∈RN

1

2
‖y − Ax‖2

2 + γ ‖x‖1 P1(y, γ )
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is studied. It is proved that any x0 belonging to the set F is the unique solution of P1(Ax0), where

F = {
x such that rank(AI ) = |I| and ∀ j /∈ I,

∣∣〈a j, AI
(

At
I AI

)−1
sign(xI )

〉∣∣ < 1
}
,

where I is the support of x, AI the active matrix associated to x, whose columns are those of A indexed by I , xI are the
non-zero components of x and a j is the column of A indexed by j. In the sequel, Span(ai)i∈I will be denoted V I . The
sufficient condition developed in [6] plays a pivotal role in several papers which investigate support recovery in presence of
noise by solving P1(y, γ ), e.g. [1,8,5] random vectors [1] or random measurements [5].

In [7], the Exact Recovery Condition (ERC) is defined. This condition does not depend on the sign but only on the support
of x0 and provides results about the recovery of x0 and stability to noise.

The goal of this Note is to show that the set of vectors that can be recovered by �1 minimization is exactly, for most
matrices, F the closure of F . This result highlights the fact that

max
j /∈I

∣∣〈a j, AI
(

At
I AI

)−1
sign(xI )

〉∣∣ and
∥∥AI

(
At

I AI
)−1

sign(xI )
∥∥

2

are good indicators of the identifiability, and brings arguments justifying the success of algorithms developed in [4] to find
very sparse but non-identifiable vectors.

Before proceeding, let us fix some terminology and definitions. A vector x0 is said identifiable if and only if it is the
unique solution of P1(Ax0).

Definition 1.1. Let (xi)i�N be N points of Rn . These points (xi)i�N are said in general position (GP) if all affine subspaces
of Rn which dimension k < n contain at most k + 1 points xi . A matrix A satisfies condition (GP) if for all sign vector
S ∈ {−1,1}N , points (S[i]ai)i�N are in general position.

It can be noticed that for any matrix A, the matrix A + E satisfies condition (GP) with probability 1 if E is any ran-
dom perturbation with an absolutely continuous density with respect to the Lebesgue measure: with this definition most
matrices satisfy condition (GP).

2. Contributions

The contributions of this paper are summarized as follows:

Theorem 2.1. If x0 ∈ F , then x0 is identifiable.

Theorem 2.2.

(i) If x0 is identifiable, and if for all y in a neighborhood of y0 = Ax0 P1(y) has only one solution, then x0 ∈ F .
(ii) If A satisfies (GP), for all y ∈ Im(A), P1(y) has a unique solution and x is identifiable if and only if x ∈ F .

Theorem 2.3. If for all y ∈ Im(A) the solution of P1(y) is unique, the application φ associating y to this solution is Lipschitz.

3. Preliminary lemmas

The two following lemmas can be found in [6].

Lemma 3.1. A vector x∗ is a solution of P1(y, γ ) if and only if

At
I

(
y − Ax∗) = γ sign

(
x∗

I

)
and ∀ j /∈ I

∣∣〈a j, y − Ax∗〉∣∣ � 1

where the support of x∗ is denoted by I .

Lemma 3.2. If for a vector x∗ the matrix AI satisfies rank(AI ) = |I| and

At
I

(
y − Ax∗) = γ sign

(
x∗

I

)
and ∀ j /∈ I,

∣∣〈a j, AI
(

At
I AI

)−1
sign

(
x∗

I

)〉∣∣ < 1

then x∗ is the unique minimizer of P1(y, γ ).

Lemma 3.3. If x0 is the unique solution of P1(Ax0) then rank(AI ) = |I|.

Proof. If there exists h ∈ Ker(A) that is supported on I = I(x0), one has for all t ∈ R, A(x0 + th) = Ax0. Consequently the
application t �→ ‖x0 + th‖1 is locally affine in a neighborhood of 0. It follows that there exists t �= 0 such that ‖x0 + th‖1 �
‖x0‖1. �
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Lemma 3.4. For all y ∈ Im(A) there exists a solution x to P1(y) such that rank(I) = |I|.

Proof. Let x0 be a solution of P1(y). If rank(I) < |I|, there exists h ∈ Ker(A) that is supported on I . For a suitable t ,
I(x0 + th) � I(x0) and x0 + th is a solution of P1(y). �
Lemma 3.5. If x0 ∈ F , then x0 is the unique solution of P1(Ax0).

Proof. Lemma 3.2 shows that x0 is the unique solution of P1(AI (x0
I + γ (At

I AI )
−1sign(x0

I )), γ ) if γ > 0 is small enough. �
Lemma 3.6. Let y ∈ Im(A) and (γn)n∈N a sequence of positive real numbers tending to 0. If (xn)n∈N are some solutions of P1(y, γn)

such that limn→∞ xn = x0 one gets that x0 is a solution of P1(y).

4. Proofs

4.1. Proof of Theorem 2.1

From Lemma 3.5 one has that vectors in F are identifiable. Since AI (At
I AI )

−1sign(xI ) only depends on the sign and the
support of x, F is a union of cones of various dimensions. It follows that the closure F of F is exactly equal to the set of
vectors x0 that can extended into a vector of F :

F = {
x0 such that ∃x1 such that I

(
x0) ∩ I

(
x1) = ∅ and x0 + x1 = x2 ∈ F

}
.

Let us now suppose that x0 ∈ F , and that there exists x1 such that I(x0) ∩ I(x1) = ∅ and x2 = x0 + x1 belongs to F .
Choose x3 ∈ RN such that Ax0 = Ax3 and define x4 := x3 + x1. We have Ax4 = Ax2 and since x2 ∈ F , x2 is the unique

solution of P1(Ax2) which implies that ‖x2‖1 < ‖x4‖1. It follows that
∥∥x2

∥∥
1 = ∥∥x0

∥∥
1 + ∥∥x1

∥∥
1 <

∥∥x4
∥∥

1 �
∥∥x3

∥∥
1 + ∥∥x1

∥∥
1, (1)

which implies ‖x0‖1 < ‖x3‖1. That is, x0 is the unique solution of P1(Ax0).

4.2. Proof of Theorem 2.2

Proof. Let y ∈ Im(A) and (γn)n∈N a sequence of positive real numbers tending to 0. From Lemma 3.4 we can always choose
a solution x(γn) of P1(y, γ ) such that the associated active matrix AIn has a full rank. Since the number of possible supports
and signs is finite, up to an extraction of a subsequence, we can suppose that all x(γn) share the same support I and the
same sign S . From Lemma 3.1, we know that x(γn) satisfies

x(γn)I = x0
I − γn

(
At

I AI
)−1

S and ∀ j /∈ I
∣∣〈a j, y − Ax(γn)

〉∣∣ � γ (2)

where x0 is the vector supported on I such that x0
I = (At

I AI )
−1 At

I y. Using Lemma 3.6, x0 is a solution of P1(y). From (2)
we deduce that I(x0) ⊂ I for γn small enough. It follows that y − Ax(γn) = γ AI (At

I AI )
−1 S = γ dI,S and thus ∀ j /∈ I ,

|〈a j,dI,S 〉| � 1.
Let us define J to be the set of all indices such that |〈a j,dI,S 〉| = 1. One can first notice that I ⊂ J .
We now show that

(i) either (a j) j∈ J are linearly dependent and one can build vectors x1 close to x0 such that P1(x1) has several solutions, in
which case condition (GP) cannot be satisfied;

(ii) or (a j) j∈ J are linearly independent and x(γn) ∈ F and x0 ∈ F and x0 is identifiable.

(i) Suppose that (a j) j∈ J are linearly dependent and let ε > 0. Define K � J such that I ⊂ K and (ak)k∈K is a basis of
V J = Span(a j) j∈ J and j0 ∈ J ∩ K c . Define S K ∈ R|K | by S K = At

K dI,S . Then, S K is a sign vector and x1 the vector supported
on K defined by

x1
K = x0

K + ε

‖S K ‖2
S K .

Now choose ε > 0 small enough to ensure that sign(x1
I(x0)) = sign(x0

I(x0)). From definition of x1, it follows that ‖x0 − x1‖2 = ε.

For γ small enough the support and the sign of x1 and the vector x1(γ ) supported in K and defined by x1(γ )K = x1
K −

γ (At
K AK )−1 S K are identical.

We shall prove that x1(γ ) is a solution of P1(Ax1, γ ) using Lemma 3.1. Indeed At
K (Ax1 − Ax1(γ )) = γ S K . The vector S =

At dI,S is the common sign of vectors (x(γn))n∈N . Since limn→∞ x(γn) = x0 it follows that for all i ∈ I(x0) ⊂ I , sign(x0[i]) =
I
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S[i]. Since for all i ∈ I , S[i] = 〈ai,dI,S 〉 = S K [i] it follows that S K = sign(x1
K ). Moreover sign(x1

K ) = sign(x1(γ )K ) which yields
that At

K (Ax1 − Ax1(γ )) = γ sign(x1(γ )K ). Since dI,S ∈ V I ⊂ V K , one has dI,S = AK (At
K AK )−1 At

K dI,S = AK (At
K AK )−1 S K . If

j /∈ K ,
∣∣〈a j, Ax1 − Ax1(γ )

〉∣∣ = γ
∣∣〈a j, AK

(
At

K AK
)−1

S K
〉∣∣ = γ

∣∣〈a j,dI,S〉
∣∣ < γ ,

and by Lemma 3.1 it follows that x1(γ ) is a solution of P1(Ax1, γ ). Now Lemma 3.6 shows that x1 is a solution of P1(Ax1).
Choose some h ∈ Ker(A) that is supported on K ∪{ j0} and such that h[ j0] = S[ j0] = at

j0
dI,S . Denote hK the restriction of h on

indices K . Since 0 = Ah = S[ j0]a j0 + AK hK and S K = At
K dI,S one has 〈sign(x1

K ),hK 〉 = St
K hk = dt

I,S AK hK = −S[ j0]dt
I,Sa j0 =

−1. Moreover, for all t ∈ R, A(x1 + th) = Ax1 and for small non-negative t
∥∥x1 + th

∥∥
1 = ∥∥x1

∥∥
1 + t + t

〈
sign

(
x1),hK

〉 = ∥∥x1
∥∥

1,

which shows that x1 is not the unique minimizer of P1(Ax1).
Notice that for each l ∈ K ∪ { j0}, S[l]al ∈ V K and S[l]al belongs to the affine hyperplan HdI,S = {u, such that

〈u,dI,S 〉 = 1}. Hence at least |K | + 1 points S[l]al belong to an affine subspace V K ∩ HdI,S which dimension equals to
|K | − 1. Therefore, (GP) is not satisfied.

(ii) Let us now suppose that the (a j) j∈ J are linearly independent. Define S J = At
J dI,S , ∀i ∈ I , S[i] = S J [i]. Let x1 be the

vector supported on J such that for all i ∈ I(x0), x1[i] = x0[i] and for all j ∈ J ∩ I(x0)c , x1[ j] = S J [ j]. One has sign(x1
J ) = S J

and since dI,S ∈ V I ⊂ V J , one has dI,S = A J (At
J A J )

−1 At
J dI,S = A J (At

J A J )
−1 S J . It follows that for all l /∈ J ,

∣∣〈al, A J
(

At
J A J

)−1
S J

〉∣∣ = ∣∣〈al,dI,S〉
∣∣ < 1

implying that x1 ∈ F and hence x0 ∈ F . �
4.3. Proof of Theorem 2.3

The proof relies on the following lemma.

Lemma 4.1. For all y0 ∈ Im(A), there exists ε0 such that for all y ∈ Im(A) ∩ B(y0, ε0), one has I(φ(y0)) ⊂ I(φ(y)).

Proof. To prove this lemma we will prove that for any y0 ∈ Im(A) and any sequence (yn)n∈N tending to y0, any subsequence
(yun )n∈N such that I(φ(yun )) = Jun = J is constant, the support J satisfies J ⊃ I = I(φ(y0)).

Denote by x0 = φ(y0) and I = I(x0). One has x0(I) = (At
I AI )

−1 At
I y0 = A+

I y0. Let (yn)n∈N be a sequence of elements
of Im(A) tending to y0 and xn = φ(yn). Up to an extraction of a subsequence, one can suppose that for all n ∈ N, I(xn) is
constant. Denote by J this common support. Then xn

J = (At
J A J )

−1 At
J yn = A+

J yn . Let x∞ = limn→∞ xn and x∞
J = A+

J y0. Let zn

be the sequence of vectors supported on I defined by zn
I = A+

I yn . By the definition of zn , Azn = P V I yn . Let K be a set such
that (ak)k∈K is a basis of Im(A), and vn the vector supported on K such that vn

K = A+
K (P V I

⊥ (yn)). One has A(zn + vn) = yn

and ‖zn + vn‖1 � ‖zn‖1 + ‖vn‖1. Noticing that
∥∥vn

∥∥
1 = ∥∥A+

K

(
P V I

⊥
(

yn − y0))∥∥
1 −→

n→∞ 0

one deduces that limn→∞ ‖zn + vn‖1 = ‖x0‖1. Moreover limn→∞ ‖xn‖1 = ‖x∞‖1 and since ‖xn‖1 � ‖zn + vn‖1 we deduce
that ‖x∞‖1 � ‖x0‖1 and finally x0 = x∞ since x0 = φ(y0). Thus one has I = I(x0) = I(x∞) ⊂ J which concludes the proof of
the lemma. �

Let y0 ∈ Im(A). There exists ε0 > 0 such that for all y ∈ Im(A) ∩ B(y0, ε0), there exists J satisfying I ⊂ J . Moreover
x = φ(y) is supported in J and x J = A+

J y. Since I ⊂ J , one also has x0
J = A+

J y0 and thus ‖x − x0‖2 = ‖A+
J (y − y0)‖2. One

deduces that ∀y ∈ Im(A) ∩ B(y0, ε0), ‖φ(y0) − φ(y)‖2 � C‖y0 − y‖2 with C = max J , rank(A J )=| J | λmax(A+
J ) which concludes

the proof of the theorem. �
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