

#### Contents lists available at SciVerse ScienceDirect

## C. R. Acad. Sci. Paris, Ser. I



www.sciencedirect.com

Géométrie différentielle/Systèmes dynamiques

# Espace de configuration d'un système mécanique et tours de fibrés associées à un multi-drapeau spécial

Configuration space of some mechanical system and towers of bundles associated to a special multi-flag

### Fernand Pelletier

Université de Savoie, laboratoire de mathématiques (LAMA), campus scientifique, 73376 Le Bourget-du-Lac cedex, France

INFO ARTICLE

Historique de l'article : Reçu le 12 octobre 2011 Accepté après révision le 12 décembre 2011 Disponible sur Internet le 10 janvier 2012

Présenté par Étienne Ghys

#### RÉSUMÉ

Dans cette Note, nous montrons que les espaces de configuration d'un bras articulé de longueur k sur  $\mathbb{R}^{m+1}$  donnent naissance à une tour naturelle de fibrés en sphères. De plus, nous établissons que, pour chaque tour de fibrés projectifs associée à un multi-drapeau spécial, on peut lui associer une telle tour de fibrés en sphères qui est un revêtement à deux feuillets de cette dernière.

© 2011 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.

#### ABSTRACT

In this Note we show that the configuration spaces of an articulated arm of length k in  $\mathbb{R}^{m+1}$  gives rise to a natural tower of sphere bundles. Moreover, we prove that, each tower of projective bundles associated to special multi-flags, we can associate such a tower of sphere bundles which is a two-fold covering of the previous one.

© 2011 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.

#### **Abridged English version**

A **special multi-flag** of step  $m \ge 1$  and length  $k \ge 1$  is a sequence (see [5]):

 $\mathcal{F}: D = D_k \subset D_{k-1} \subset \cdots \subset D_j \subset \cdots \subset D_1 \subset D_0 = TM$ 

of distributions of constant rank on a manifold M of dimension (k + 1)m + 1 which satisfies the following conditions:

- (i)  $D_{j-1} = [D_j, D_j]$  is the distribution generated by all Lie bracket of sections of  $D_j$ .
- (ii)  $D_j$  is a distribution of constant rank (k j + 1)m + 1.
- (iii) Each Cauchy characteristic subdistribution  $L(D_j)$  of  $D_j$  is a subdistribution of constant corank one in each  $D_{j+1}$ , for j = 1, ..., k 1, and  $L(D_k) = 0$ .
- (iv) There exists a completely integrable subdistribution  $F \subset D_1$  of corank one in  $D_1$ .

When m = 1 a special multi-flag is a Goursat flag, and, in this case, the conditions (iii) and (iv) are automatically satisfied but for such a distribution F is not unique. One fundamental result on Goursat flags is the existence of locally

Adresse e-mail: pelletier@univ-savoie.fr.

<sup>1631-073</sup>X/\$ – see front matter © 2011 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés. doi:10.1016/j.crma.2011.12.007

universal Goursat distributions proved by R. Montgomery and M. Zhitomirskii in [4]: the "monster Goursat manifold" which is constructed by applying Cartan prolongations k times. On the other hand, the kinematic system of a car with k - 1trailers can be described by an appropriate Goursat distribution  $\Delta_k$  on  $\mathbb{R}^2 \times (\mathbb{S}^1)^k$  and moreover, this configuration space is diffeomorphic to the Cartan prolongation of the distribution  $\Delta_{k-1}$  on  $\mathbb{R}^2 \times (\mathbb{S}^1)^{k-1}$  (see Appendix D of [4]).

The purpose of this Note is to prove a generalization of this last result for special multi-flags of step  $m \ge 2$ .

For  $m \ge 2$ , the notion of special multi-flags can be considered as a generalization of the notion of Goursat flags. Furthermore, it is proved in [1] and [9] that the existence of a completely integrable subdistribution F of  $D_1$  implies property (iii), and when such a distribution F exists, it is then unique. This fundamental result of [1] and [9] is again obtained by Cartan prolongation (see also [6]). So, in this situation, we can also define a "monster tower" by successive Cartan prolongations of  $T\mathbb{R}^{m+1}$  (see for instance [1,9,2]). So we get a tower of projective bundles:

$$\dots \to P^k(m) \to P^{k-1}(m) \to \dots \to P^1(m) \to P^0(m) := \mathbb{R}^{m+1}.$$
(1)

In this Note, we define a natural notion of "spherical prolongation" which also gives rise to a tower of sphere bundles:

$$\dots \to \hat{P}^k(m) \to \hat{P}^{k-1}(m) \to \dots \to \hat{P}^1(m) \to \hat{P}^0(m) := \mathbb{R}^{m+1}.$$
(2)

Note that we have a canonical 2-fold covering

 $\hat{P}^k(m) \to P^k(m)$ 

for any  $k \ge 1$  and  $m \ge 2$ .

On the other hand, we can construct a kinematic system (called articulated arm in [10], and system of rigid bars in [3]) in the following way: consider a series of k segments  $[M_i; M_{i+1}]$ , i = 0, ..., k - 1, in  $\mathbb{R}^{m+1}$ , with  $m \ge 2$ , keeping a constant length  $l_i = 1$  between  $M_i$  and  $M_{i+1}$ , and the articulation occurs at points  $M_i$ , for i = 1, ..., k - 1; we look for the kinematic evolution of this mechanical system *under the constraint that the velocity of each point*  $M_i$ , i = 0, ..., k - 1, *is collinear with the segment*  $[M_i, M_{i+1}]$ .

The configuration space  $C^k(m)$  of such a kinematic system is diffeomorphic to  $\mathbb{R}^{m+1} \times (\mathbb{S}^m)^k$ , and this system is characterized by a distribution  $\mathcal{D}_k$  which generates a special multi-flags of length k (see [3] and [10]).

The essential result of this Note is:

**Theorem 1.** Let be  $\hat{\Delta}_k$  the canonical distribution obtained on  $\hat{P}^k(m)$  after k-fold "spherical prolongation". Then we have: For each  $k \ge 1$  and  $m \ge 2$ , there exists a diffeomorphism  $\Phi^k$  from  $\hat{P}^k(m)$  to  $\mathcal{C}^k(m)$  such that:

(i) if  $\hat{\pi}^k : \hat{P}^k(m) \to \hat{P}^{k-1}(m)$  and  $p^k : \mathcal{C}^k(m) \to \mathcal{C}^{k-1}(m)$  are the canonical projections, we have:

$$p^k \circ \Phi^k = \Phi^{k-1} \circ \hat{\pi}^k.$$

(ii)  $\Phi_*^k(\hat{\Delta}_k) = \mathcal{D}_k.$ 

In particular, this result gives a positive answer to a conjecture proposed in Section 6 of [2].

#### 1. Introduction et résultats

Un *multi-drapeau spécial* de pas  $m \ge 1$  et de longueur  $k \ge 1$  est une suite (voir [5]) :

 $\mathcal{F}: D = D_k \subset D_{k-1} \subset \cdots \subset D_i \subset \cdots \subset D_1 \subset D_0 = TM$ 

de distributions de rang constant sur une variété M de dimension (k + 1)m + 1 qui vérifie les conditions suivantes :

- (i)  $D_{i-1} = [D_i, D_i]$  est la distribution engendrée par les crochets de Lie de section de  $D_i$ .
- (ii)  $D_j$  est une distribution de rang constant (k j + 1)m + 1.
- (iii) Chaque distribution caractéristique de Cauchy<sup>1</sup>  $L(D_j)$  of  $D_j$  est une sous distribution de corang (constant) un dans chaque distribution  $D_{j+1}$ , pour j = 1, ..., k 1, et  $L(D_k) = 0$ .
- (iv) Il existe une sous distribution complètement intégrable  $F \subset D_1$  de corang un dans  $D_1$ .

On dit que *D* engendre le multi-drapeau  $\mathcal{F}$ .

La notion de multi-drapeau spécial a été introduite dans [7] et [6]. Pour  $m \ge 2$ , indépendamment dans [1] et [9], cette notion a été précisée, et il est démontré que l'existence d'une sous distribution complètement intégrable  $F \subset D_1$  de corang

<sup>&</sup>lt;sup>1</sup> La distribution caractéristique de Cauchy  $L(\Delta)$  d'une distribution  $\Delta$  est la distribution engendrée par l'ensemble champs de vecteurs X tangents à  $\Delta$  tel que [X, Y] soit tangent à  $\Delta$ , pour tout champ de vecteurs Y tangent à  $\Delta$ .

un dans  $D_1$  implique la propriété (iii). Quand une telle distribution F existe, elle est unique. Lorsque m = 1, un multidrapeau spécial est un drapeau de Goursat, et, dans ce cas, les conditions (iii) et (iv) sont automatiquement satisfaites, mais une telle distribution F n'est pas unique. L'un des résultats fondamentaux sur les drapeaux de Goursat établis par R. Montgomery et M. Zhitomirskii dans [4] est la construction d'un «monster Goursat manifold», fondé sur les «prolongations de Cartan» sucessives de l'epace tangent  $T\mathbb{R}^2$ . D'autre part, le système mécanique de la voiture avec k - 1 remorques peut être décrit par une distribution de Goursat appropriée  $\mathcal{D}_k$  sur  $\mathbb{R}^2 \times (\mathbb{S}^1)^k$ . De plus, l'espace de configuration de ce système mécanique avec k remorques est difféomorphique à la variété obtenue par prolongation de Cartan de la distribution  $\mathcal{D}_{k-1}$ sur  $\mathbb{R}^2 \times (\mathbb{S}^1)^{k-1}$  et la distribution  $\mathcal{D}_k$  associée est difféomorphe à la prolongation de Cartan de  $\mathcal{D}_{k-1}$  (voir Appendix D de [4]).

L'objectif essentiel de cette Note est d'établir une généralisation (Théorème 3.2) de ce dernier résultat dans le cadre des multi-drapeaux spéciaux de pas  $m \ge 2$ . En particulier, ce résultat donne une réponse positive à une conjecture proposée dans [2], Section 6.

#### 2. Tours de fibrés projectifs et sphériques associées à un multi-drapeau spécial

#### 2.1. Prolongation de Cartan et tour de fibrés projectifs

Un couple (M, D) formé d'une distribution de rang constant sur une variété M, sera appelé un système différentiel (voir [1] et [9]). Etant donné deux systèmes différentiels (M, D) et  $(N, \Delta)$ , on dira que (M, D, x) est localement équivalent à  $(N, \Delta, y)$  s'il existe un voisinage ouvert U de x dans M et un difféomorphisme  $\phi$  de U sur un voisinage V de  $y = \phi(x)$  dans N tel que  $\phi_*(D|_U) = \Delta|_V$ .

Soit *D* une distribution de rang constant m + 1 sur une variété *M* de dimension *n*. De manière classique, le fibré projectif P(D, M) sur *M*, associé à *D*, est l'ensemble

$$P(D,M) := \bigcup_{x \in M} P(D(x))$$
(3)

où P(D(x)) est l'espace projectif de l'espace vectoriel D(x). On obtient ainsi un fibré  $\pi : P(D, M) \to M$  dont la fibre  $\pi^{-1}(x)$  est difféomorphique à l'espace projectif  $\mathbb{R}P^m$ . La **prolongation de Cartan de rang un** de D est la distribution  $D^{(1)}$  définie de la manière suivante : étant donné un point  $(x, \lambda) \in G(D, 1)$  alors

$$D_{(\mathbf{x},\lambda)}^{(1)} := \mathrm{d}\pi^{-1}(\lambda) \subset T_{(\mathbf{x},\lambda)} P(D,M) \tag{4}$$

où  $\lambda$  est une direction dans D(x). Par suite,  $D^{(1)}$  est une distribution sur P(D, M) de rang constant m + 1. Pour tout  $m \ge 2$  et  $k \ge 1$ , en appliquant k fois cette « procédure » à ( $\mathbb{R}^{m+1}, T\mathbb{R}^{m+1}$ ), par induction, on obtient une tour de fibrés projectifs [9] :

$$\dots \to P^k(m) \to P^{k-1}(m) \to \dots \to P^1(m) \to P^0(m) := \mathbb{R}^{m+1}$$
(5)

où, pour tout j = 0, ..., k,  $P^{j}(m)$  est une variété de dimension (j + 1)m + 1, et sur chaque  $P^{j}(m)$ ,  $\Delta_{j}$  est une distribution canonique définie inductivement par :

$$P^{j}(k) = P(\Delta_{j-1}, P^{j-1}(m))$$
 et  $\Delta_{j} = (\Delta_{j-1})^{(1)}$  pour  $j = 1, ..., k$  et  $\Delta_{0} = T\mathbb{R}^{m+1}$ .

On a alors le résultat fondamental suivant :

#### Théorème 2.1. (Voir [9].)

(4)

- (1) Sur  $P^k(m)$ , la distribution  $\Delta_k$  engendre un multi-drapeau spécial de pas m et de longueur k.
- (2) Soit  $\mathcal{F} : D = D_k \subset D_{k-1} \subset \cdots \subset D_j \subset \cdots \subset D_1 \subset D_0 = TM$  un multi-drapeau spécial de pas  $m \ge 2$  et de longueur  $k \ge 1$ . Alors, pour tout  $x \in M$ , il existe  $y \in P^k(m)$  tels que les systèmes différentiels (M, D, x) et  $(P^k(m), \Delta_k, y)$  soient localement équivalents.

#### 2.2. Prolongation sphérique et tour de fibrés en sphères

Soit *D* une distribution de rang constant m + 1 sur une variété *M* de dimension *n*. On fixe une métrique riemanniennne *g* sur *M*, et on désigne par  $\hat{\pi} : S(D, M, g) \to M$  le fibré en sphères associé à *D* relativement à la métrique induite par *g* sur *D*. Sur S(D, M, g), on considère l'action antipodale de  $\mathbb{Z}_2$ . Le quotient de S(D, M, g) par cette action s'identifie naturellement avec P(D, M). La projection associé  $\tau : S(D, M, g) \to P(D, M)$  est un morphisme de fibrés sur *M* et aussi un revêtement à deux feuillets; en particulier  $\tau$  est un difféomorphisme local. Sur S(D, M, g) on considère la distribution  $D^{[1]}$  définie de la manière suivante :

$$D_{(x,\nu)}^{[1]} := \left\{ \nu \in T_{(x,\nu)} S(D, M, g) \text{ tel que } d\hat{\pi}(\nu) = \lambda \nu \text{ pour un certain } \lambda \in \mathbb{R} \right\}$$
(6)

où v est un vecteur de norme 1 dans D(x).

La distribution  $D^{[1]}$  est appelée **la prolongation sphérique** de rang un de (M, D, g).

**Remarque 2.1.** En fait, le fibré S(D, M) est défini dès que l'on se donne une métrique riemannienne sur D. Dans ce cas, la distribution  $D^{[1]}$  est aussi bien définie.

Lemme 2.1. (Voir [8].) Avec les considérations précédentes on a :

(i)  $\tau_* D^{[1]} = D^{(1)}$ .

(ii) Il existe une métrique riemannienne canonique  $\hat{g}$  sur S(D, M, g) qui ne dépend que du choix de g sur M.

Soient  $g_0$  et  $g_1$  deux métriques riemanniennes sur M. On note  $S_i(D, M)$  le fibré en sphères de D associé à la métrique  $g_i$  et  $D_i^{[1]}$  la prolongation sphérique de  $(M, D, g_i)$  pour i = 0, 1. On a alors :

**Lemme 2.2.** (Voir [8].) Il existe un isomorphisme canonique de fibrés  $\psi$  :  $S_0(D, M) \rightarrow S_1(D, M)$  tel que  $\psi_*(D_0^{[1]}) = D_1^{[1]}$ .

On considère une distribution D' de rang constant sur une variété M', et  $\phi: M \to M'$  une immersion injective telle que  $\phi_*(D_x) \subset D'_{\phi(x)}$  pour tout  $x \in M$ . Etant donné une métrique riemannienne g' sur M', la métrique riemannienne  $g = \phi^* g$  est bien définie sur *M* et on peut considérer la prolongation sphérique associée. Alors on a :

**Lemme 2.3.** (Voir [8].) Dans le contexte précédent, soit  $\hat{\phi}$  :  $S(D, M, g) \rightarrow S(D', M', g')$  l'application définie par  $\hat{\phi}(x, v) =$  $(\phi(x), d_x\phi(v))$ . Alors  $\hat{\phi}$  est un morphisme de fibrés au-dessus de  $\phi$  qui est une immersion injective, et telle que :

(i)  $\hat{\phi}(S(D, M, g)) = S(\phi_*(D), \phi(M), g').$ (ii)  $\hat{\phi}_*(D^{[1]}) = (\phi_*(D))^{[1]} \subset (D')^{[1]}.$ 

De plus, si  $\phi$  est un difféomorphisme tel que  $\phi_*(D) = D'$ , alors  $\hat{\phi}$  est aussi un difféomorphisme et on a  $\hat{\phi}_*(D^{[1]}) = (D')^{[1]}$ . De plus, la métrique riemannienne  $\hat{\phi}_* \hat{g}'$  est la métrique canonique  $\hat{g}$  associée g (cf. Lemme 2.1).

Comme dans le paragraphe précédent, pour tout  $m \ge 2$  et  $k \ge 1$  on peut définir par induction une tour de fibrés en sphères (pour un choix fixé de métrique g sur M) :

$$\dots \to \hat{P}^k(M) \to \hat{P}^{k-1}(M) \to \dots \to \hat{P}^1(M) \to \hat{P}^0(M) := M$$
(7)

où, pour tout j = 0, ..., k,  $\hat{P}^{j}(M)$  est une variété de dimension (j + 1)m + 1, et sur chaque  $\hat{P}^{j}(M)$ , on a une distribution canonique  $\hat{\Delta}_i$  et une métrique riemannienne canonique  $g_i$ , définies par induction :

$$\hat{P}^{j}(M) = S(\hat{\Delta}_{j-1}, \hat{P}^{j-1}(M), g_{j-1}), \qquad \hat{\Delta}_{j} = (\hat{\Delta}_{j-1})^{[1]} \text{ pour } j = 1, \dots, k \text{ et } \hat{\Delta}_{0} = TM$$

 $g_i$  est la métrique riemannienne canonique  $\hat{g}_{i-1}$  sur  $S(\hat{\Delta}_{i-1}, \hat{P}^{j-1}(M), g_{i-1})$  associée à  $g_{i-1}$  pour j = 1, ..., k et  $g_0 = g$ . Remarquons que si g' est une autre métrique riemannienne sur M, en appliquant le Lemme 2.2 et le Lemme 2.3, par induction, on construit une famille de difféomorphismes  $\psi^j$ , ayant la propriété d'envoyer la tour fibrés en sphères (7) associée à g, sur la tour de fibrés en sphères associée à g':

$$\cdots \to \hat{P}^{\prime k}(M) \to \hat{P}^{\prime k-1}(M) \to \cdots \to \hat{P}^{\prime 1}(M) \to \hat{P}^{\prime 0}(M) := M$$

telle que, pour tout j = 0, ..., k, on ait :

$$\psi^j(\hat{P}^j(M)) = \hat{P}^{\prime j}(M),$$

 $\psi^{j}$  préserve chaque fibre  $\psi^{j}_{*}(\hat{\Delta}_{j}) = \hat{\Delta}'_{i}$ .

Ainsi les propriétés de la tour (7) sont indépendantes du choix de la métrique riemannienne g sur M. On notera simplement  $\hat{P}^{j}(m) := \hat{P}^{j}(\mathbb{R}^{m+1})$  pour tout  $j \in \mathbb{N}$ . A partir du Théorème 2.1, et du Lemme 2.1, on obtient :

Théorème 2.2. Considérons

$$\dots \to \hat{P}^{k}(m) \to \hat{P}^{k-1}(m) \to \dots \to \hat{P}^{1}(m) \to \hat{P}^{0}(m) := \mathbb{R}^{m+1}$$
(8)

la tour de fibrés en sphères associée à la métrique canonique de  $\mathbb{R}^{m+1}$ .

- (i) On a un revêtement à deux feuillets  $\tau_k : \hat{P}^k(m) \to P^k(m)$  tel que  $(\tau_k)_*(\hat{\Delta}_k) = \Delta_k$ .
- (ii) Sur chaque variété  $\hat{P}^{k}(m)$ , la distribution  $\hat{\Delta}_{k}$  engendre un multi-drapeau spécial de pas m et de longueur k.
- (iii) Soit  $\mathcal{F}: D = D_k \subset D_{k-1} \subset \cdots \subset D_i \subset \cdots \subset D_1 \subset D_0 = TM$  un multi-drapeau spécial de pas m et de longueur  $k \ge 1$ . Alors, pour tout  $x \in M$ , il existe un point  $y \in \hat{P}^k(m)$  pour lequel les systèmes différentiels (M, D, x) et  $(\hat{P}^k(m), \hat{\Delta}_k, y)$  soient localement équivalents.

(8)

#### 3. Tour de fibrés en sphères associée à un système mécanique

#### 3.1. Système mécanique et multi-drapeau spécial

On se place dans le contexte de [3] et [10]. Considérons une série de k segments  $[M_i; M_{i+1}]$ ,  $i = 0, \ldots, k-1$ , dans  $\mathbb{R}^{m+1}$ , avec  $m \ge 2$ , qui gardent une longueur constante  $l_i = 1$  entre  $M_i$  et  $M_{i+1}$ , et l'articulation a lieu en  $M_i$ , pour  $i = 1, \ldots, k-1$ . Ce système mécanique est appelé «un bras articulé de longueur k sur  $\mathbb{R}^{m+1}$ » dans [10] et un système de «k barres rigides» dans [3].

On s'intéresse à l'évolution cinématique de ce système mécanique, sous la contrainte que la vitesse de chaque point  $M_i$  est *colinéaire avec le segment*  $[M_i, M_{i+1}]$  *pour i* = 0, ..., k - 1. Ce problème est complètement décrit dans [3] et [10]. Notons que, comme pour la voiture avec remorques, l'évolution cinématique de ce système peut se décrire en termes de coordonnées hypersphériques (voir [10]) et aussi on a des résultats de platitude et de controllabilité d'un tel système mécanique (voir [3]). On peut associer à ce système un multi-drapeau spécial de pas  $m \ge 2$  et de longueur  $k \ge 1$  comme suit : l'espace  $(\mathbb{R}^{m+1})^{k+1}$ , étant écrit comme le produit cartésien  $\mathbb{R}_0^{m+1} \times \cdots \times \mathbb{R}_i^{m+1} \times \cdots \times \mathbb{R}_k^{m+1}$  de k copies de  $\mathbb{R}^{m+1}$ , soit  $x_i = (x_i^1, \dots, x_i^{m+1})$  les coordonnées canoniques de  $\mathbb{R}^{m+1}_i$  que l'on munit de son produit scalaire canonique. Sur  $(\mathbb{R}^{m+1})^{k+1}$ , considérons le champ de vecteurs

$$\mathcal{Z}_{i} = \sum_{r=1}^{m+1} (x_{i+1}^{r} - x_{i}^{r}) \frac{\partial}{\partial x_{i}^{r}} \quad \text{pour } i = 0, \dots, k-1.$$
(9)

Compte tenu des hypothèses, l'évolution cinématique d'un bras articulé  $(M_0, \ldots, M_k)$  est décrite par le système controlé :

$$\dot{q} = \sum_{i=0}^{k-1} u_i \mathcal{Z}_i + \sum_{r=1}^{m+1} u_{n+r} \frac{\partial}{\partial x_k^r}$$
(10)

avec les contraintes suivantes :  $||x_i - x_{i+1}|| = 1$  pour  $i = 0 \cdots k - 1$  (voir [3] ou [10]).

Considérons l'application  $\Psi_i(x_0, ..., x_k) = ||x_i - x_{i+1}||^2 - 1$ . Alors, l'espace de configuration  $C^k(m)$  de ce système mécanique est l'ensemble { $(x_0, ..., x_k)$ , tel que  $\Psi_i(x_0, ..., x_k) = 0$  pour i = 0, ..., k - 1}.

Soit  $\mathcal{E}_k$  la distribution engendrée par les champs de vecteurs

$$\left\{\mathcal{Z}_0,\ldots,\mathcal{Z}_{k-1},\frac{\partial}{\partial x_k^1},\ldots,\frac{\partial}{\partial x_k^{m+1}}\right\}$$

1. 1

On note  $\mathcal{D}_k$  la distribution sur  $\mathcal{C}^k(m)$  définie par  $\mathcal{D}_k(q) = T_q \mathcal{C}^k(m) \cap \mathcal{E}_k$ . Les propriétés de  $\mathcal{D}_k$  sont résumées dans le résultat suivant :

**Théorème 3.1.** (Voir [3,10].) Sur  $C^{k}(m)$ , la distribution  $\mathcal{D}_{k}$  possède les propriétés suivantes :

- (i)  $\mathcal{D}_k$  est une distribution de rang constant m + 1.
- (ii) La distribution  $\mathcal{D}_k$  engendre un multi drapeau spécial sur  $\mathcal{C}^k(m)$  de pas m et de longueur k.

#### 3.2. Bras articulé et prolongation sphérique

A un bras articulé sur  $\mathbb{R}^{m+1}$  ( $m \ge 2$ ) de longueur  $k \ge 1$  on peut associer la tour de fibrés sphériques :

$$\dots \to \mathcal{C}^{k}(m) \to \mathcal{C}^{k-1}(m) \to \dots \to \mathcal{C}^{1}(m) \to \mathcal{C}^{0}(m) := \mathbb{R}^{m+1}.$$
(11)

Il résulte du Théorème 3.1, et du Théorème 2.2, que le système différentiel  $(\mathcal{C}^k(m), \mathcal{D}_k))$  associé à un bras articulé de longueur k sur  $\mathbb{R}^{m+1}$  est localement isomorphe au système différentiel canonique  $(\hat{P}^k(m), \hat{\Delta}_k)$  en un point approprié. En fait le théorème suivant donne un résultat bien plus fort :

**Théorème 3.2.** Soit  $\hat{\Delta}_k$  la distribution canonique obtenue sur  $\hat{P}^k(m)$  après k « prolongations sphériques » successives de  $T\mathbb{R}^{m+1}$ . Alors, pour chaque  $k \ge 1$  et  $m \ge 2$ , il existe un difféomorphisme  $\Phi^k$  de  $\hat{P}^k(m)$  sur  $\mathcal{C}^k(m)$  tel que :

(i) 
$$p^k \circ \Phi^k = \Phi^{k-1} \circ \hat{\pi}^k$$
 où  $\hat{\pi}^k : \hat{P}^k(m) \to \hat{P}^{k-1}(m)$  et  $p^k : \mathcal{C}^k(m) \to \mathcal{C}_{k-1}(m)$  sont les projections canoniques.  
(ii)  $\Phi^k_*(\hat{\Delta}_k) = \mathcal{D}_k$ .

De plus, on a le diagramme suivant dont chaque projection verticale est un revêtement à deux feuillets, pour  $k \ge 1$ :

Il résulte alors du Théorème 2.2 et du Théorème 3.2 le corollaire suivant :

**Corollaire 3.1.** Soit  $\mathcal{F} : D = D_k \subset D_{k-1} \subset \cdots \subset D_j \subset \cdots \subset D_1 \subset D_0 = TM$  un multi-drapeau spécial de pas  $m \ge 2$  et de longueur  $k \ge 1$ . Alors, pour tout  $x \in M$ , il existe  $y \in \mathcal{C}^k(m)$  pour lequel les systèmes différentiels (M, D, x) et  $(\mathcal{C}^k(m), \mathcal{D}_k, y)$  sont localement équivalents.

La preuve du Théorème 3.2 repose sur la proposition suivante :

#### Proposition 3.1. (Voir [8].)

- (1) Il existe un isomorphisme de fibrés sur  $\mathbb{R}^{m+1} \hat{\Psi} : \mathcal{D}_k \to \mathcal{C}^k(m) \times \mathbb{R}^{m+1}$ .
- (2) Chaque fibre du fibré trivial C<sup>k</sup>(m) × ℝ<sup>m+1</sup> étant munie du produit euclidien canonique sur ℝ<sup>m+1</sup>, soit γ<sub>k</sub> la métrique riemannienne sur D<sub>k</sub>, tel que le morphisme Ψ soit une isométrie entre chaque fibre. Alors Ψ induit un difféomorphisme Ψ : S(D<sub>k</sub>, C<sup>k</sup>(m), γ<sub>k</sub>) → C<sup>k+1</sup>(m) qui vérifie les propriété suivantes :
   (i) V communique succession entre S(D<sub>k</sub>, C<sup>k</sup>(m), φ<sub>k</sub>) → C<sup>k+1</sup>(m) qui vérifie les propriété suivantes :
  - (i)  $\Psi$  commute avec les projections canoniques  $S(\mathcal{D}_k, \mathcal{C}^k(m), \gamma_k) \to \mathcal{C}^k(m)$  et  $\mathcal{C}^{k+1}(m) \to \mathcal{C}^k(m)$ . (ii)  $\Psi_*[(\mathcal{D}_k)^{[1]}] = \mathcal{D}_{k+1}$ .

Esquisse de preuve du Théorème 3.2 :

Supposons que l'on ait un difféomorphisme  $\Phi^k$ :  $\hat{P}^k(m) \to C^k(m)$  qui vérifie les proprétés (i) et (ii) du Théorème 1.

Selon la Proposition 3.1, on a un difféomorphisme  $\Psi : S(\mathcal{D}_k, \mathcal{C}^k(m), \gamma_k) \to \mathcal{C}^{k+1}(m)$  tel que :  $\Psi_*[(\mathcal{D}_k)^{[1]}] = \mathcal{D}_{k+1}$ , et qui commute avec les projections naturelles  $S(\mathcal{D}_k, \mathcal{C}^k(m), \gamma_k) \to \mathcal{C}^k(m)$  et  $\mathcal{C}^{k+1}(m) \to \mathcal{C}^k(m)$ . Prenant en compte notre hypothèse de récurrence, on peut munir  $\hat{P}^k(m)$  de la métrique riemannienne  $\bar{\gamma}_k = (\Psi^k)^*(\gamma_k)$ . Selon le Lemme 2.3, on peut étendre  $\Phi^k$  :  $\hat{P}^k(m) \to \mathcal{C}^k(m)$  en un difféomorphisme  $\hat{\Phi}^k : S(\hat{\Delta}_k, \hat{P}^k(m), \bar{\gamma}_k) \to S(\mathcal{D}_k, \mathcal{C}_k, \gamma_k)$  tel que  $\hat{\Phi}^k_*[(\hat{\Delta}_k)^{[1]}] = (\mathcal{D}_k)^{[1]}$  et qui commute avec les projections naturelles

$$S(\hat{\Delta}_k, \hat{P}^k(m), \bar{\gamma}_k) \to \hat{P}^k(m) \text{ et } \mathcal{C}^{k+1}(m) \to \mathcal{C}^k(m).$$

Finalement, selon le Lemme 2.2, on peut munir  $\hat{P}^k(m)$  de la métrique riemannienne construite par induction sur la tour de fibrés sphères (7), et on a alors un difféomorphisme  $\Phi : \hat{P}^{k+1}(m) \to S(\hat{\Delta}_k, \hat{P}^k(m), \bar{\gamma}_k)$  qui commute avec les projections naturelles

$$\hat{P}^{k+1}(m) \to \hat{P}^{k}(m)$$
 et  $S(\hat{\Delta}_{k}, \hat{P}^{k}(m), \bar{\gamma}_{k}) \to \hat{P}^{k}(m)$ 

et tel que  $\Phi_*(\hat{\Delta}_{k+1}) = \hat{\Delta}_k^{[1]}$ .

Alors  $\phi^{k+1} = \Psi \circ \hat{\phi}^k \circ \phi$  vérifie les propriétés du Théorème 3.2 au niveau k+1. La dernière partie est alors une conséquence du Théorème 2.2.

#### Références

- [1] J. Adachi, Global stability of special multi-flags, Israel J. Math. 179 (2010) 29-56.
- [2] A.L. Castro, W.C. Howard, A Monster approach to Goursat multi-flags, http://arxiv.org/abs/1107.4145, July 2011.
- [3] S. Li, W. Respondek, The geometry, controllability, and flatness property of the n-bar system, J. Control 84 (5) (2011) 834-850.
- [4] R. Montgomery, M. Zhitomirskii, Geometric approach to Goursat flags, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001) 459-493.
- [5] P. Mormul, Geometric singularity classes for special k-flags, k ≥ 2, of arbitrary length, in: S. Janeczko (Ed.), Singularity Theory Seminar, vol. 8, Warsaw Univ. of Technology, 2003, pp. 87–100, preprint.
- [6] P. Mormul, Multi-dimensional Cartan prolongation and special k-flags, in: H. Hironaka, et al. (Eds.), Geometric Singularity Theory, in: Banach Center Publications of Math., vol. 65, Polish Acad. Sci., Warsaw, 2004, pp. 157–178.
- [7] W. Pasillas-Lépine, W. Respondek, Contact systems and corank one involutive subdistributions, Acta Appl. Math. 69 (2001) 105-128.
- [8] F. Pelletier, Configuration spaces of a kinematic system and Monster tower of special multi-flags, http://arxiv.org/abs/1109.4788.
- [9] K. Shibuya, K. Yamaguchi, Drapeau theorem for differential systems, Differential Geom. Appl. 27 (6) (2009) 793-808.
- [10] M. Slayman, F. Pelletier, Articulated arm and special multi-flags, JMSAA 8 (1) (March 2011) 9-41.