Probability Theory

A Note on time regularity of generalized Ornstein–Uhlenbeck processes with cylindrical stable noise

Une Note sur la régularité du temps des processus Ornstein–Uhlenbeck généralisée avec le bruit stables cylindriques

Yong Liu\(^a,b\), Jianliang Zhai\(^a\)

\(^a\) LMAM, School of Mathematical Science, Peking University, Beijing 100871, PR China

\(^b\) Center for Statistical Science, Peking University, Beijing 100871, PR China

1. Introduction

The time regularity of stochastic process plays an important role in the study of some finer structural properties, such as (strong) Markov property, measurability and Doob's stopping time theorem (see [3,8]). In recent years, there are several substantial results on time regularity of SPDE driven by Lévy process (see [1,2,4,6–8] and references therein). In [1], and Section 4 in [8], the authors considered the càdlàg modification of Ornstein–Uhlenbeck process with Lévy noise on a Hilbert space \(H\) as follows,

\[
\mathrm{d}X(t) = AX(t) \, \mathrm{d}t + \mathrm{d}L(t), \quad t \geq 0.
\]

Let \(A\) be the generator of a \(C_0\)-semigroup on \(H\), and \(A^*\) be the adjoint operator of \(A\). In [1], Brzeźniak et al. show that if the basis \(\{\beta_n\}_{n \in \mathbb{N}}\) belongs to the domain \(D(A^*)\), then \(\beta_n \to 0\) implies that \(H\)-valued process \(X\) in Eq. (1) has no \(H\)-càdlàg trajectory with probability 1 (see Theorem 2.1 in [1] for details). Then they present three questions on \(H\)-càdlàg modification.
naturally raised by the above result and a related question on stochastic heat equation with α-stable noise in [1]. If \(L^n\) are symmetric α-stable processes, \(\alpha \in (0, 2)\), Priola, Zabczyk conjectured in [8], under Hypothesis L (see Section 4 in [8] for details), the \(H\)-càdlàg property of Eq. (1) holds under much weaker conditions than \(\sum_{n=1}^{\infty} \beta_n^\alpha < \infty\).

Inspired by [1,8], in this Note, we attempt to investigate the càdlàg modification of trajectories of Eq. (1). At first, we give a necessary condition of existence of \(H\)-càdlàg modification of Eq. (1) by the Lévy characteristic measure of \(L^n\) and \(\beta_n\). This result implies Theorem 2.1 in [1] also (see Theorem 2.1 in Section 2 below). Then, applying Theorem 2.1, we show a necessary and sufficient condition of \(H\)-càdlàg modification of Eq. (1) driven by cylindrical α-stable processes (see Theorem 2.2 in Section 2). It seems that this result denies the conjecture in Subsection 4.1 in [8] and partly answers Question 3 in [1]. Furthermore, applying Theorem 2.2 to the stochastic heat equation (3) with α-stable noise, we answer Questions 1 and 4 in [1]. However, we are unable to answer Question 2 in [1] by the framework and method in this Note.

The main results are listed in Section 2 and the proofs are shown in Section 3.

2. Main results

In this Note, we focus on the same assumptions of solution \((X(t), t \geq 0)\) to Eq. (1) as in [1]. Let \(H\) be a separable Hilbert space equipped with the inner product \((\cdot, \cdot)_H\). Set \(L\) be a class of Lévy process with an expansion of the form \(L = \sum_{n=1}^{\infty} \beta_n L^n(t) e_n\), where \(L^n\) are independent, identically distributed, càdlàg real-valued Lévy processes on a complete probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})\) with Lévy characteristic measure \(\nu\) not being identically 0, \(\{e_n\}_{n \in \mathbb{N}}\) is the fixed reference orthonormal basis in \(H\) and \(\beta_n\) is a sequence of positive numbers. Moreover, we assume \(\{e_n\}_{n \in \mathbb{N}} \subset D(A^\alpha)\), and the weak solution of Eq. (1) is represented as for each \(n \in \mathbb{N},\)

\[
d(X(t), e_n)_H = X(t, \cdot)_H e_n dt + \beta_n dL^n(t).
\]

Denote the processes \((X(t), e_n)_H\) by \(X^n(t)\). Then we have a necessary condition for \((X(t), t \geq 0)\) having \(H\)-càdlàg modification as follows:

Theorem 2.1. Assume that the process \(X\) in Eq. (1) has \(H\)-càdlàg modification, then for any \(\epsilon > 0\), \(\sum_{n=1}^{\infty} \nu(|y| \geq \epsilon / \beta_n) < \infty\).

Remark 1. Here, we emphasize that this theorem implies that if \(\beta_n\) does not converge to 0, then there exists \(\epsilon\) such that \(\sum_{n=1}^{\infty} \nu(|y| \geq \epsilon / \beta_n) = \infty\), hence \(X\) has no \(H\)-càdlàg modification. That is Theorem 2.1 in [1].

Then, we investigate the case when \(L^n, n = 1, 2, \ldots\) are independent, identically distributed(i.i.d.), α-stable processes, \(\alpha \in (0, 2)\), of which the Lévy characteristic measure \(\nu\) satisfies \(\nu(dy) = \{c_2 y^{-1-\alpha} dy, y > 0\} + \{c_2 y^{1-\alpha} dy, y < 0\}\) with \(c_1 \geq 0, c_2 \geq 0, c_1 + c_2 > 0\) (see [9]). Therefore \(\nu(|y| \geq \epsilon / \beta_n) = (c_1 + c_2) \beta_n^\alpha / (\alpha c^\alpha)\) implies for any \(\epsilon > 0\), \(\sum_{n=1}^{\infty} \nu(|y| \geq \epsilon / \beta_n) < \infty\) if and only if \(\sum_{n=1}^{\infty} |\beta_n|^\alpha < \infty\).

Theorem 4.13 in [6] says that the process \(L\) defines a Lévy process on \(H\) if and only if \(\sum_{n=1}^{\infty} |\beta_n|^\alpha < \infty\). Moreover, as pointed out by Pesat, Zabczyk in Theorem 9.3 in [6], by Kotelniz regularity results if the C0-semigroup \(S(t)\) of \(A\) satisfies the so-called generalized contraction principle, i.e. \(\|S(t)\|_{L(H, H)} \leq e^{\delta t}\) for all \(t > 0\), where \(\delta > 0\) is a constant then the property of \(L\) taking values in \(H\) ensures that \(X\) has \(H\)-càdlàg modification. So, if we assume that the generalized contraction principle of semigroup \(S(t)\) holds, combining with Theorem 2.1, then we have

Theorem 2.2. Assume \((L^n, n = 1, 2, \ldots)\) are i.i.d., non-trivial α-stable processes, \(\alpha \in (0, 2)\), then the following three assertions are equivalent:

1. the process \((X(t), t \geq 0)\) in Eq. (1) has \(H\)-càdlàg modification;
2. \(\sum_{n=1}^{\infty} |\beta_n|^\alpha < \infty;\)
3. the process \(L\) is a Lévy process on \(H\).

Remark 2. In Subsection 4.1 in [8], considering \((L^n, n = 1, 2, \ldots)\) are i.i.d., non-trivial symmetric α-stable processes, Priola and Zabczyk conjectured that càdlàg modification property holds for Eq. (1) under much weaker condition than \(\sum_{n=1}^{\infty} |\beta_n|^\alpha < \infty\). However, it seems that the above Theorem 2.2 denies their conjecture. Specially, Theorem 2.2 does not need the assumption of symmetry of \(L_n\).

Remark 3. In [1], the authors have raised a question (refer to Question 3 in [1]) that whether the requirement that the process \(L\) evolves in \(H\) is also necessary for the existence of \(H\)-càdlàg modification of \(X\) or not. Theorem 2.2 answers this question partly, i.e. at least if \((L^n, n = 1, 2, \ldots)\) are independent, identically distributed, non-trivial α-stable processes, the process \(L\) evolving in \(H\) is a necessary condition of \(X\) having \(H\)-càdlàg modification.

Moreover, if the operator \(A\) in Eq. (1) is self-adjoint with eigenvectors \(e_n\) and the corresponding eigenvalues \(-\lambda_n < 0, n \in \mathbb{N}\), then \((X^n(t), t \geq 0)\) is the \(\mathbb{R}\)-valued Ornstein-Uhlenbeck process defined by
\[\text{d}X^\delta(t) = -\lambda_n X^\delta(t) \text{d}t + \beta_n \text{d}L^\alpha(t), \quad t \geq 0. \]
(2)

For \(\delta \in \mathbb{R} \), define \(H_\delta = D(A^{\delta/2}) \) with the naturally defined scalar product, i.e. \(H_\delta = \{x = \sum_{n=1}^{\infty} x_n e_n : \sum_{n=1}^{\infty} \lambda_n^\delta |x_n|^2 < \infty, \ x_n \in \mathbb{R} \} \). Note \(\{\lambda_n^{-\delta/2} e_n\} \) is an orthonormal basis in \(H_\delta \), as a direct corollary of Theorem 2.2, we have

Proposition 2.3. Assume \(L^n \) are i.i.d., non-trivial \(\alpha \)-stable processes, \(\alpha \in (0, 2) \) and \(X^n \) is the solution of Eq. (2). Then the following assertions are equivalent:

1. the process \((X(t), t \geq 0)\) in Eq. (1) has \(H_\delta \)-c\text{à}dl\text{à}g modification;
2. \(\sum_{n=1}^{\infty} |\beta_n|^{\delta/2} \alpha^\delta < \infty \);
3. the process \(L \) is a L\text{é}vy process on \(H_\delta \).

Furthermore, we apply Proposition 2.3 to the heat equation on \(\mathcal{O} = (0, \pi) \) with \(\alpha \)-stable noise introduced in [1] as follows:

\[\text{d}X(t) = \Delta X(t) \text{d}t + \text{d}L(t), \]
(3)

where \(\Delta u = \partial^2 u / \partial x^2 \), \(u \in D(A) \) and Dirichlet boundary conditions. It is well known that \(-\Delta \) is a self-adjoint operator with eigenfunctions \(\{e_n(\cdot) = \sqrt{2/\pi} \sin(n \cdot)\}_{n \in \mathbb{N}} \) and eigenvalues \(\{\lambda_n : \lambda_n = n^2\}_{n \in \mathbb{N}} \). Proposition 2.3 implies

Proposition 2.4. If \(\beta_n = 1 \) for any \(n \in \mathbb{N} \), Eq. (3) has \(H_\delta \)-c\text{à}dl\text{à}g modification if and only if \(\delta < -1/\alpha \).

Remark 4. Proposition 2.4 presents an answer to Question 4 in [1] that the process \(X \) in Eq. (3) has no \(H_\delta \)-c\text{à}dl\text{à}g modification for \(\delta \in [-1/\alpha, 0) \).

Due to Proposition 4.2 in [8], if \(L^n \) are i.i.d., non-trivial symmetric \(\alpha \)-stable processes, then \((X(t), t \geq 0)\) given in (3) takes value in \(H \) if and only if \(\sum_{n=1}^{\infty} \beta_n^{\alpha/2} n^{2\alpha} < \infty \). So, setting \(\delta = 0 \) in Proposition 2.3 above, we have

Proposition 2.5. Assume \(L^n \) are i.i.d., non-trivial symmetric \(\alpha \)-stable processes. If \((\beta_n, n \geq 1) \) satisfies \(\sum_{n=1}^{\infty} \beta_n^{\alpha/2} n^{2\alpha} < \infty \) and \(\sum_{\alpha=1}^{\infty} \beta_n^{\alpha/2} = \infty \), then there is no \(H_\delta \)-c\text{à}dl\text{à}g modification of \((X(t), t \geq 0)\) in Eq. (3), even if for any \(t > 0 \), \((X(t), t \geq 0)\) in \(H \) and the \(\text{L\text{é}vy} \) characteristic measure of \(L \) supports on \(H \). This is a negative answer to Question 1 in [1].

3. Proofs

Before proving Theorem 2.1, we need some lemmas. Let \((X(t), t \geq 0)\) be an \(H \)-valued process on a complete probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})\) and \(X^n(t) = (X(t), e_n)_H \), where \(\{e_n\} \) is an orthonormal basis in \(H \). We have

Lemma 3.1. The process \((X(t), t \geq 0)\) is an \(H \)-c\text{à}dl\text{à}g (resp. continuous) process with probability 1 if and only if for any \(n \in \mathbb{N} \), the process \((X^n(t), t \geq 0)\) is c\text{à}dl\text{à}g (resp. continuous) process with probability 1 and for any \(T > 0 \),

\[\lim_{N \to \infty} \sup_{t \in [0, T]} \sum_{i=1}^{\infty} |X^i(t)|^2 = 0, \quad \text{with probability 1}. \]
(4)

Proof. The ‘only if’ part. Let \(\Omega_0 = \{\omega \in \Omega : \sum_{i=1}^{\infty} |X^i(s)|^2 \leq \epsilon \} \). Since the process \((X^n(t), t \geq 0)\) has the right-continuous property for any \(n \in \mathbb{N} \) on \(\Omega_0 \),

\[\limsup_{s \to t} \|X(s') - X(t)\|_H^2 \leq \lim_{s \to t} \sum_{i=1}^{N_{l,s,t}} |X^i(s') - X^i(t)|^2 + 2 \sup_{s \in [0, t+1]} \sum_{i=1}^{N_{l,s,t}} |X^i(s)|^2 \leq 2\epsilon, \]
(5)

On the other hand, similar to Eq. (5), for any \(t > 0 \),

\[\limsup_{s_1, s_2 \to t} \|X(s_1) - X(s_2)\|_H^2 \leq 2\epsilon, \]
(6)

because the process \((X^n(t), t \geq 0)\) has the left limits property for any \(n \in \mathbb{N} \) on \(\Omega_0 \).
Hence by Eq. (5) and Eq. (6), \((X(t), t \geq 0) \) is càdlàg in \(H \) on \(\Omega_0 \).

The 'if' part. A well-known equivalent characterization of the compact set \(K \) in a separable Hilbert space \(V \) is that \(K \) is bounded, closed and for any orthonormal basis \(\{v_n\}_{n \in \mathbb{N}} \) in \(V \), for any \(\epsilon > 0 \), there is an \(N_\epsilon \in \mathbb{N} \) (dependent on \(\{v_n\}_{n \in \mathbb{N}} \)), such that \(\sup_{x \in \mathcal{K}} \sum_{i=0}^{\infty} \langle x, v_i \rangle_V^2 < \epsilon. \)

By Proposition 1.1 in [5], for any \(x \in D([0, T], H), \) \(\{X(t), t \in [0, T]\} \cup \{X(t-), t \in [0, T]\} \) is a compact set in \(H \). Therefore, for a.e. \(\omega \in \Omega \), using the above equivalent characterization of compact set in \(H \), there is an \(N_{T, \varepsilon, \omega} \in \mathbb{N} \) such that \(\sup_{t \in [0, T]} \sum_{i=0}^{\infty} |X(t)|^2 < \epsilon. \)

Finally, since \(|X^n(t) - X^n(s)|^2 \leq \|X(t) - X(s)\|^2_H \), the property that \(X \) is an \(H \)-càdlàg process with probability 1 implies \(\mathbb{P}(\omega \in \Omega: X^n(\omega) \in D([0, \infty), \mathbb{R})) = 1. \)

Set \(\Delta f(t) = f(t) - f(t-). \) Noting that if \((X(t), t \geq 0) \) is an \(H \)-càdlàg process, then \(\sup_{n \geq N} \sup_{t \in [0, T]} |\Delta X^n(t)| \leq 2(\sup_{t \in [0, T]} \sum_{i=0}^{\infty} |X^n(t)|^2)^{1/2} \), hence by the 'only if' part of Lemma 3.1, we obtain

Lemma 3.2. Assume the process \((X(t), t \geq 0)\) is an \(H \)-càdlàg process with probability 1, then for any \(T > 0, \)

\[
\lim_{N \to \infty} \sup_{n \geq N} \sup_{t \in [0, T]} |\Delta X^n(t)| = 0, \quad \text{with probability 1.}
\]

Proof of Theorem 2.1. Without loss of generality, we assume \(X \) has the \(H \)-càdlàg property. Let \(\tau_n = \inf\{t > 0: |\beta_n \Delta L^n(t)| \geq \epsilon\} \), in particular \(|\beta_n \Delta L^n(\tau_n)| \geq \epsilon \). Then \(\tau_n, n \in \mathbb{N} \) are mutually independent and exponentially distributed with parameter \(\psi_n = \psi(\epsilon) \geq \epsilon/\beta_n \). Fixing \(T > 0, \) in view of the \(H \)-càdlàg property of \(X \), Lemma 3.2 implies \(\lim_{n \to \infty} \mathbb{P}(\tau_n \leq T, \text{for some } n \geq N) = 0. \) Since \(\mathbb{P}(\tau_n \leq T, \text{for some } n \geq N) = 1 - \prod_{n \geq N} \mathbb{P}(\tau_n \leq T) = 1 - \exp(-\sum_{n=N}^{\infty} \psi_n T), \) we get \(\sum_{n=1}^{\infty} \psi_n \geq \epsilon/\beta_n = \sum_{n=1}^{\infty} \psi_n < \infty. \)

Acknowledgements

The authors thank Prof. Zhao Dong and Dr. Lihu Xu for their encouragement and interesting discussions, and we are grateful to the anonymous referees for their valuable comments and suggestions. This work was partly supported by NSFC (No. 11071008, No. 11101419) and the Doctoral Program Foundation of the Ministry of Education, China.

References

