

Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Algebra/Group Theory

Disjoint pairs for $GL_n(\mathbb{R})$ and $GL_n(\mathbb{C})$

Paires disjointes pour $GL(n, \mathbb{R})$ et $GL(n, \mathbb{C})$

Avraham Aizenbud, Omer Offen, Eitan Sayag

Technion Mathematics, Department of Mathematics, Haifa, Israel

ARTICLE INFO

Article history: Received 17 October 2011 Accepted after revision 14 November 2011 Available online 1 December 2011

Presented by Michel Duflo

ABSTRACT

We show the disjointness property of Klyachko for $GL_n(\mathbb{R})$ and $GL_n(\mathbb{C})$. © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Nous montrons la propriété de disjonction de Klyachko pour $GL_n(\mathbb{R})$ et $GL_n(\mathbb{C})$. © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

A finite family of subgroups of GL_n , each endowed with a character, was introduced by Klyachko in [9]. Over a finite field this family provides a model for GL_n (see [7]). In this note we consider the archimedean case and prove pairwise disjointness of Klyachko pairs in a sense we now explain.

Definition 1.1. Let *G* be a real reductive group, H_i a closed subgroup and χ_i a continuous character of H_i , i = 1, 2. We say that $(G, (H_1, \chi_1))$ and $(G, (H_2, \chi_2))$ are *disjoint pairs* if for every irreducible admissible smooth Fréchet representation of moderate growth π of *G* (see Section 2) we have

 $\dim \operatorname{Hom}_{H_1}(\pi, \chi_1) \cdot \dim \operatorname{Hom}_{H_2}(\pi, \chi_2) = 0.$

In order to formulate our main result we introduce some notation. In Section 3 we use this notation without further mention. Let F equal either \mathbb{R} or \mathbb{C} and let ψ be a non-trivial unitary character of F. Set $X_n = GL_n(F)$, let U_n be the subgroup of upper uni-triangular matrices in X_n and let ψ_n be the character of U_n defined by

$$\psi_n(u) = \psi(u_{1,2} + \dots + u_{n-1,n}), \quad u \in U_n.$$

Let $w_n = (\delta_{i,n+1-i}) \in X_n$ and let

$$J_n = \begin{pmatrix} 0 & w_n \\ -w_n & 0 \end{pmatrix} \in X_{2n}.$$

Consider the symplectic group Sp_{2n} defined by

 $Sp_{2n} = \{g \in X_{2n}: {}^tgJ_ng = J_n\}.$

E-mail address: offen@tx.technion.ac.il (O. Offen).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2011.11.011

Fix $n \in \mathbb{N}$. For $0 \leq r \leq n$ such that n - r = 2k is even consider the Klyachko subgroup $H_{r,n}$ of X_n defined by

$$H_{r,n} = \left\{ \begin{pmatrix} u & x \\ 0 & h \end{pmatrix} \colon u \in U_r, \ x \in M_{r \times 2k}(F), \ h \in Sp_{2k} \right\}$$

and let $\psi_{r,n}$ be the character of $H_{r,n}$ defined by

$$\psi_{r,n}\begin{pmatrix} u & x\\ 0 & h \end{pmatrix} = \psi_r(u).$$

Theorem 1.1. The pairs $(X_n, (H_{r,n}, \psi_{r,n})), 0 \le r \le n, r \equiv n \mod 2$ are pairwise disjoint.

The analogous result was obtained in [7] over a finite field and in [10] over a non-archimedean local field.

2. Generalities

Let *G* be a group, *V* a vector space over \mathbb{C} and $\chi : G \to \mathbb{C}^*$ a group homomorphism. For a representation (π, V) of *G* on *V*, i.e. a group homomorphism $\pi : G \to GL(V)$, let

$$V^{G,\chi} = \{ v \in V \colon \pi(g)v = \chi(g)v \text{ for all } g \in G \}.$$

If χ is trivial we also denote $V^{G,\chi}$ by V^G . Denote by $\pi \otimes \chi$ (or sometimes by $V \otimes \chi$) the representation of G on V defined by $g \mapsto \chi(g)\pi(g)$. Note that $V^{G,\chi} = (V \otimes \chi^{-1})^G$.

Let g be a Lie algebra over \mathbb{R} . If V is a g-module let $V^{\mathfrak{g}} = \{v \in V : \mathfrak{g}v = 0\}$ be the subspace annihilated by g and $V_{\mathfrak{g}} = V/\mathfrak{g}V$ the space of co-invariants.

We refer to [2] for the notions of Schwartz functions and Schwartz distributions in the following setting. For a Nash manifold X we denote by S(X) the Fréchet space of \mathbb{C} valued Schwartz functions on X and by $S^*(X)$ its topological dual, the space of Schwartz distributions.

Let *G* be a Nash group with a Nash action on *X* and let g be the Lie algebra of *G*. Then S(X) (and therefore also $S^*(X)$) is naturally a g-module. Let χ be a character of *G*, i.e., a smooth group homomorphism $\chi : G \to \mathbb{C}^*$. Then $S^*(X) \otimes \chi^{-1}$ is also a g-module and evidently

$$\mathcal{S}^*(X)^{G,\chi} \subseteq \left(\mathcal{S}^*(X) \otimes \chi^{-1}\right)^{\mathfrak{g}}.$$
(2.1)

For every $x \in X$ denote by G_x the G-orbit of x, by G_x the stabilizer of x in G and by \mathfrak{g}_x the Lie algebra of G_x . Let T(X) be the tangent bundle of X. For a Nash submanifold Y of X let $N_Y^X = (T(X)|_Y)/T(Y)$ be the normal bundle to Y in X and let $\operatorname{CN}_Y^X = (N_Y^X)^*$ be the conormal bundle. For a point $y \in Y$ we denote by $N_{Y,y}^X$ (resp. $\operatorname{CN}_{Y,y}^X$) the fiber over y in N_Y^X (resp. $\operatorname{CN}_{Y,y}^X$), i.e., the normal (resp. conormal) space to Y in X at the point y.

If X is itself a Nash group and H_i is a closed subgroup, i = 1, 2, then we shall always consider the left action of $H_1 \times H_2$ on X defined by $((h_1, h_2), x) \mapsto h_1 x h_2^{-1}$ for $h_1 \in H_1$, $h_2 \in H_2$ and $x \in X$.

Let *G* be a real reductive group. An admissible smooth Fréchet representation of moderate growth π of *G* is a representation in the category $\mathcal{FH}(G)$ defined in [12, 11.6.8]. It is called a smooth *F*-representation in [4] and a Casselman–Wallach representation in [11]. We denote by $\tilde{\pi}$ the contragredient of π .

The following is an immediate consequence of [11, Theorem 2.3 (b)]. The statement in [11] is in terms of tempered generalized functions rather than Schwartz distributions. The translation is straightforward.

Theorem 2.1 (Sun–Zhu). Let G be a real reductive group, H_i a closed subgroup and χ_i a continuous character of H_i , i = 1, 2. If $\mathcal{S}^*(G)^{H_1 \times H_2, \chi_1^{-1} \times \chi_2^{-1}} = 0$ then for every irreducible admissible smooth Fréchet representation of moderate growth π of G we have

dim Hom_{H_1} $(\pi, \chi_1) \cdot$ dim Hom_{H_2} $(\tilde{\pi}, \chi_2) = 0$.

Next we provide a sufficient condition for vanishing of the space of equivariant distributions in an algebraic context.

Lemma 2.2. Let $G = \mathbb{G}_a(F)$ (= F) and let \mathfrak{g} (= F) be the Lie algebra of G. Let $\chi : G \to \mathbb{C}^*$ be a non-trivial character and let π be a finite-dimensional algebraic representation of G. Then $(\pi \otimes \chi)_{\mathfrak{g}} = 0$.

Proof. Since π is algebraic and *G* unipotent, the only eigenvalue of $\pi \otimes \chi$ on *G* is χ . The derivative of χ at zero is not zero and therefore every non-zero element of \mathfrak{g} acts on $\pi \otimes \chi$ by an invertible linear transformation. Hence $\mathfrak{g}(\pi \otimes \chi) = \pi \otimes \chi$ and there are no non-zero coinvariants. \Box

Proposition 2.3. Let *G* be an *F*-linear algebraic group acting on a smooth algebraic variety *X*. Let $\chi : G \to \mathbb{C}^*$ be a unitary character and assume that for every $x \in X$ there exists a unipotent element $u \in G_x$ such that $\chi(u) \neq 1$. Then $\mathcal{S}^*(X)^{G,\chi} = 0$.

Proof. By (2.1) we have $T|_{\mathfrak{g}(\mathcal{S}(X)\otimes\chi^{-1})} \equiv 0$ for every $T \in \mathcal{S}^*(X)^{G,\chi}$. It is therefore enough to show that $\mathcal{S}(X)\otimes\chi^{-1} = \mathfrak{g}(\mathcal{S}(X)\otimes\chi^{-1})$. By [1, Theorem 2.2.15] it is enough to show that $(\operatorname{Sym}^k(CN^X_{G,\chi})\otimes\chi')_{\mathfrak{g}_{\chi}} = 0$ for all $k \in \mathbb{Z}_{\geq 0}$ where $\chi' = \chi^{-1}|_{G_{\chi}} \cdot ((\Delta_G)|_{G_{\chi}}/\Delta_{G_{\chi}})$ and Δ_H denotes the modulus function of a locally compact group H.

Since χ is unitary and $(\Delta_G)|_{G_X}/\Delta_{G_X}$ positive we have $\chi'(u) \neq 1$. Since u is unipotent it lies in the image of some algebraic homomorphism $\varphi: F \to G_X$ (see e.g. [5, Proposition 5.29]). Let \mathfrak{u} be the Lie algebra of $\varphi(F)$. It follows from Lemma 2.2 that $(\operatorname{Sym}^k(CN_{G_X,X}^X) \otimes \chi')_{\mathfrak{u}} = 0$ and since $\mathfrak{u} \subseteq \mathfrak{g}_X$ also that $(\operatorname{Sym}^k(CN_{X,G_X}^X) \otimes \chi')_{\mathfrak{g}_X} = 0$. The theorem follows. \Box

Remark 2.1. See [8, Lemma 3.4] for a related result.

Let ψ be a unitary character of F and G an F-linear algebraic group. A character χ of G is ψ -algebraic if there exists an F-algebraic homomorphism $\phi : G \to \mathbb{G}_a(F)$ such that $\chi = \psi \circ \phi$.

Corollary 2.4. With the above notation assume that G acts on a smooth algebraic variety X. Let χ be a ψ -algebraic character of G such that $\chi|_{G_X} \neq 1$ for every $x \in X$. Then $S^*(X)^{G,\chi} = 0$.

Proof. Let $\phi : G \to \mathbb{G}_a(F)$ be as above. For $x \in X$ the stabilizer G_x is an *F*-linear algebraic group and therefore each of its elements has a Jordan decomposition in G_x (see e.g. [6, §34.2]). If $\chi(s) \neq 1$ for some semi-simple $s \in G_x$ then let *S* be an *F*-torus in G_x containing *s*. Then $\phi|_S$ is a non-trivial algebraic homomorphism from a non-trivial *F*-torus to the additive group $\mathbb{G}_a(F)$, which is a contradiction. Thus $\chi(u) \neq 1$ for some unipotent element $u \in G_x$. The corollary therefore follows from Proposition 2.3. \Box

Theorem 2.5. Let X be an F-reductive group, H_i an algebraic subgroup and χ_i a ψ -algebraic character of H_i , i = 1, 2. Set $G = H_1 \times H_2$ and $\chi = \chi_1 \times \chi_2$ and assume that $\chi|_{G_X} \neq 1$ for all $x \in X$.

(1) For every irreducible admissible smooth Fréchet representation of moderate growth π of X we have

dim Hom_{*H*1}(π , χ_1) · dim Hom_{*H*2}($\tilde{\pi}$, χ_2) = 0.

(2) If $X = GL_n(F)$ and ι is the involution on X defined by $g^{\iota} = {}^t g^{-1}$ then $(X, (H_1, \chi_1))$ and $(X, (H_2^{\iota}, \chi_2^{\iota}))$ are disjoint pairs.

Proof. The first part is immediate from Theorem 2.1 and Corollary 2.4. (Note that χ^{-1} is ψ^{-1} -algebraic and $\chi^{-1}|_{G_X} \neq 1$, $x \in X$.) For $X = GL_n(F)$ it follows from [3, Theorem 2.4.2] that for every irreducible admissible smooth Fréchet representation of moderate growth π of X we have $\pi^{\ell} \simeq \tilde{\pi}$. Thus,

 $\operatorname{Hom}_{H_2}(\tilde{\pi}, \chi_2) \simeq \operatorname{Hom}_{H_2}(\pi^{\iota}, \chi_2) \simeq \operatorname{Hom}_{H_2^{\iota}}(\pi, \chi_2^{\iota}).$

The second part therefore follows from the first. \Box

3. Disjointness

Fix $n \in \mathbb{N}$ and $0 \le r \ne r' \le n$ such that $r \equiv n \equiv r' \mod 2$. Let ι be the involution on X_n defined by $g^{\iota} = {}^t g^{-1}$, $G = H_{r,n} \times H_{r',n}^{\iota}$ and $\theta = \psi_{r,n} \times \psi_{r',n}^{\iota}$ a unitary character of G. Clearly θ is ψ -algebraic.

By [10, Proposition 2] (see Remark 2 of [10]) we have

Theorem 3.1. With the above notation $\theta|_{G_x} \neq 1$ for all $x \in X$.

Proof of Theorem 1.1. The theorem follows from Theorems 2.5(2) and 3.1.

References

[1] Avraham Aizenbud, Dmitry Gourevitch, Smooth transfer of Kloosterman integrals (the archimedean case), Amer. J. Math., in press.

[2] Avraham Aizenbud, Dmitry Gourevitch, Schwartz functions on Nash manifolds, Int. Math. Res. Not. IMRN 155 (5) (2008) 37. Art. ID rnm.

- [3] Avraham Aizenbud, Dmitry Gourevitch, Eitan Sayag, $(GL_{n+1}(F), GL_n(F))$ is a Gelfand pair for any local field F, Compos. Math. 144 (6) (2008) 1504–1524.
- [4] Joseph Bernstein, Bernhard Krötz, Smooth fréchet globalizations of Harish-Chandra modules, Preprint.
- [5] John Fogarty, Invariant Theory, W.A. Benjamin, Inc., New York-Amsterdam, 1969.
- [6] James E. Humphreys, Linear Algebraic Groups, Graduate Texts in Mathematics, vol. 21, Springer-Verlag, New York, 1975.
- [7] N.F.J. Inglis, J. Saxl, An explicit model for the complex representations of the finite general linear groups, Arch. Math. (Basel) 57 (5) (1991) 424-431.
- [8] Dihua Jiang, Binyong Sun, Chen-Bo Zhu, Uniqueness of Ginzburg-Rallis models: the Archimedean case, Trans. Amer. Math. Soc. 363 (5) (2011) 2763–2802.
- [9] A.A. Klyachko, Models for complex representations of groups GL(n, q), Mat. Sb. (N.S.) 120(162) (3) (1983) 371–386.
- [10] Omer Offen, Eitan Sayag, Uniqueness and disjointness of Klyachko models, J. Funct. Anal. 254 (11) (2008) 2846-2865.
- [11] Binyong Sun, Chen-Bo Zhu, A general form of Gelfand-Kazhdan criterion, Manuscripta Math. 136 (1-2) (2011) 185-197, doi:10.1007/s00229-011-0437-x.
- [12] Nolan R. Wallach, Real Reductive Groups II, Pure and Applied Mathematics, vol. 132, Academic Press, Inc., Boston, MA, 1992.