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In this Note, we give two new perturbative results for prescribing the Webster scalar
curvature on the (2n + 1)-dimensional sphere endowed with its standard CR structure. The
first result generalizes the one obtained by A. Malchiodi and F. Uguzzoni (2002) in [9].
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r é s u m é

Dans cette Note, on donne deux nouveaux résultats perturbatifs pour préscrire la courbure
scalaire de Webster sur la sphère de dimension (2n+1) munie de sa structure CR standard.
Le premier résultat généralise celui obtenu par A. Malchiodi et F. Uguzzoni (2002) dans [9].

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this Note, we revisit a problem of geometric origin. Namely, let S2n+1 be the unit sphere of Cn+1 defined by
S2n+1 = {ζ = (ζ 1, . . . , ζn+1) ∈ Cn+1/|ζ |2 = ∑n+1

j=1 |ζ j |2 = 1} endowed with its standard contact form θ = i(∂ − ∂)|ζ |2 =
i
∑n+1

j=1 ζ j dζ j − ζ j dζ j . The Webster scalar curvature problem resumes to find a contact form θ̃ CR equivalent to θ such that

the associated Webster scalar curvature R θ̃ = K , where K is some given function on S
2n+1. It is equivalent to find a solution

u of the following problem:

{
Lu = K u1+ 2

n ,

u > 0 on S2n+1
(1)

where L = 2(n+1)
n �θ + n(n+1)

2 is the conformal sub-Laplacian (since the Webster scalar curvature of θ is Rθ = n(n+1)
2 ), and

�θ – denoted also by �� in the literature – is the sub-Laplacian operator (the real part of the Kohn Laplacian ��) for
(S2n+1, θ). Note that problem (1) is the CR counterpart of the scalar curvature problem in the Riemannian setting (see e.g.
[2,8,10]).

This problem has been envisaged under perturbation or symmetric hypotheses (see [5] and [9]). Our aim is to handle
such a question using some topological and dynamical tools related to the theory of critical points at infinity (see Bahri [1]).

Let K : S2n+1 −→ R be a C 2 function. We introduce the following assumption:

(N.D) K has a finite set of nondegenerate critical points, denoted by K, such that �θ K (y) �= 0, ∀y ∈ K.
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We introduce the subset:

K+ = {
y ∈ K; −�θ K (y) > 0

}
, (2)

and we denote by (C.C) the condition:

(C.C) Assume that K (ζ ) = 1 + εK0(ζ ), ∀ζ ∈ S2n+1, where K0 ∈ C 2(S2n+1) and |ε| small.

Let ind(K , y) be the Morse index of K at its critical point y. For an integer k, we write k ∈ ℵ, if k satisfies the following
condition: For any y ∈ K+ , we have 2n + 1 − ind(K , y) �= k + 1. That is

ℵ = {
k ∈ N/∀y ∈ K+, 2n + 1 − ind(K , y) �= k + 1

}
. (3)

For example if k � 2n + 1 then k ∈ ℵ.
Our first existence result generalizes that of [9]:

Theorem 1.1. Let n � 1, K : S2n+1 → R a C 2 positive function satisfying (N.D) and (C.C). If

max
k∈ℵ

∣∣∣∣1 −
∑

y∈K+
2n+1−ind(K ,y)�k

(−1)2n+1−ind(K ,y)

∣∣∣∣ �= 0 (4)

then, for |ε| small enough, there exists a solution for problem (1).

As a corollary we find the result of [9]:

Corollary 1.2. Let n � 1. K : S
2n+1 → R a C 2 positive function satisfying (N.D) and (C.C). If∑

y∈K+
(−1)2n+1−ind(K ,y) �= 1, (5)

then, for |ε| small enough, there exists a solution for problem (1).

Our second existence result is not based on the count-indices formula. We introduce

for p ∈ N, K+
p = {

y ∈ K+; ind(K , y) = p
}
, and K+∗ = K+ \ K+

0 . (6)

Theorem 1.3. Let n � 1, K : S
2n+1 → R a C 2 positive function satisfying (N.D), (C.C), and (A) ∃ ỹ ∈ K+

1 , such that, K ( ỹ) � K (z),
∀z ∈ K+

2 .
Then, provided that |ε| is small enough, there exists a solution for problem (1).

2. Variational framework. Lack of compactness. Proofs of the results

Let S 1 be the completion of C∞(S2n+1) for the norm ‖u‖2 = ∫
S2n+1 Lu.u θ ∧ dθn. Let

∑ = {u ∈ S 1/‖u‖ = 1} and
∑+ =

{u ∈ ∑
/u � 0}. The Euler functional associated to problem (1) on S 1 is:

J (u) = ‖u‖2

(
∫

S2n+1 K |u|2+ 2
n θ ∧ dθn)

n
n+1

.

One knows that if v is a critical point of J in
∑+ , then u = J (v)

n
2 v is a solution for (1) in S 1, and hence the contact form

θ̃ = u
2
n θ has its Webster scalar curvature R θ̃ = K .

Problem (1) is known to be delicate because the inclusion S 1 ↪→ L
2(n+1)

n is continuous but not compact, and the functional
J does not satisfy the Palais–Smale condition. In order to characterize the sequences failing the Palais–Smale condition, we
recall some definitions and notations. Let ω be the solution of Yamabe problem on the Heisenberg group Hn , defined for
all ξ = (z, t) in Hn by ω(ξ) = |1 + |z|2 − it|−n. For each (g, λ) ∈ Hn × (0,∞) we obtain the other solutions ω(g,λ)(ξ) =
λnω(λg−1ξ). Now, for each (a, λ) ∈ S

2n+1 × (0,∞), we introduce the solution of Yamabe problem on S
2n+1:

δ(a,λ)(ζ ) = 1

|1 + ζn+1|n ω(F (a),λ) ◦ F (ζ ) (7)

where F is a biholomorphic map from S2n+1 � {a point(�= a)} onto Hn , induced by the Cayley Transform (see [7,9]). The
sphere is globally CR equivalent to itself, then, standard arguments and results of [3] and [4] (where the case of manifolds
locally CR-equivalent to the sphere was treated) are valid here. Since we are arguing by contradiction we have
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Proposition 2.1. Assume (1) has no solution. The only critical points at infinity of J in
∑+ are combinations of q masses (q � 1),∑q

i=1 δ(yi ,+∞) := (y1, . . . , yq)∞ , where the yi ’s are distinct in K+ .
The Morse index of (y1, . . . , yq)∞ is m(y1, . . . , yq)∞ = q − 1 + ∑q

i=1 2n + 1 − ind(K , yi).

Proof of Theorem 1.1. Since K = 1 + εK0, for ε = 0 we obtain the Yamabe functional J0, which possesses a (2n + 2)-
dimensional manifold of critical points Z = {δ(a,λ), (a, λ) ∈ S

2n+1 × (0,∞)}. For β ∈ R, let Jβ = {u ∈ ∑+
, J (u) � β}. Observe

that, since K0 is bounded, J (u) = J0(u)(1+ O (ε)), where O (ε) is independent of u and tends to 0 with ε. Readily we derive:

Lemma 2.1. Let η > 0, for |ε| small enough, we have J S+η ⊂ J S+2η
0 ⊂ J S+3η .

Here S is the best Sobolev constant S = J0(δ(a,λ)) = min J0 on
∑+ . On the other hand, the critical level J ((y1, . . . , yq)∞) =

S(
∑q

i=1 1/K (yi)
n)1/(n+1) tends to Sq1/(n+1) as ε → 0, since K (yi) = 1 + εK0(yi). Taking η = S/4, we can assume

|ε| sufficiently small that: critical points at infinity made of two bubbles or more are above the level S + 3η, and
those made of a single bubble are below the level S + η. Therefore, J has no critical points at infinity in the set
J S+3η

S+η = {u ∈ ∑+
, S + η � J (u) � S + 3η}. Since, arguing by contradiction, we assume that (1) has no solution, it fol-

lows that J S+3η � J S+η , where � denotes retracts by deformation. Using Lemma 2.1, we have that J S+2η
0 � J S+η . Now, we

claim that J S+η is a contractible set. Indeed, from what precedes, it is sufficient to prove that J S+2η
0 is a contractible set.

Let u0 ∈ J S+2η
0 , and s �→ u(s, u0) the Yamabe flow line. The flow verifies the following equation:

⎧⎨
⎩

∂u

∂s
= −∂ J0(u),

u(0) = u0.

Using the results of [6], we know that the Palais–Smale condition is satisfied for the above equation for all s > 0. When
s → +∞, u(s, u0) converges to a single mass in Z . Thus, J S+2η

0 � Z . It follows that J S+2η
0 is a contractible set, since Z is

a contractible set. Our claim follows. Now, let � be the integer for which maxk∈ℵ |1 − ∑
{y∈K+,m(y)∞�k}(−1)m(y)∞| �= 0

is achieved. Here m(y)∞ = 2n + 1 − ind(K , y) is the Morse index of the critical point at infinity (y)∞ . Let X∞
� =⋃

{y∈K+,m(y)∞��} Wu(y)∞. It is a stratified set of top dimension �, and, since it is made of unstable manifolds of criti-

cal points at infinity of a single mass, we derive from what precedes that X∞
� ⊂ J S+η . Observe that X∞

� is contractible in
J S+η , since J S+η is a contractible set. More precisely, there exists a contraction h : [0,1] × X∞

� → J S+η , i.e. h continuous
and such that h(0, u) = u and h(1, u) = ũ a fixed point in X∞

� . Let H = h([0,1] × X∞
� ). H is a contractible stratified set of

dimension � + 1. Using the flow lines of −∂ J , and the fact that H ⊂ J S+η , we have H � ⋃
{y∈K+,m(y)∞��+1} Wu(y)∞ . Now,

using the fact that � ∈ ℵ, there are no critical points at infinity of Morse index � + 1. We derive that H � X∞
� . Then, taking

the Euler characteristic of both sides, we derive that 1 = ∑
{y∈K+,m(y)∞��}(−1)m(y)∞ . This contradicts the assumption of

Theorem 1.1. �
Proof of Theorem 1.3. Arguing by contradiction, we assume that (1) has no solution. Let ∂ be the boundary operator in the
sense of Floer–Milnor homology as introduced in [11]. We recall that singular chains, in this homology, are generated by
unstable manifolds of critical points of J , and, if (y)∞ is a critical point at infinity of Morse index m(y)∞ , then

∂
(
Wu(y)∞

) =
∑

{(z)∞; m(z)∞=m(y)∞−1}
i
(
(y)∞, (z)∞

)
Wu(z)∞

where i((y)∞, (z)∞) is the intersection number of W u(y)∞ and W s(z)∞ , the unstable (resp. stable) manifold of (y)∞ (resp.
(z)∞), with respect of −∂ J (see [11]).

Taking y = ỹ, defined in assumption (A) of Theorem 1.3, W u( ỹ)∞ is a manifold of dimension m( ỹ)∞ = 2n, and satisfies
Wu( ỹ)∞ ∩ W s(z)∞ = ∅ for any (z)∞ of Morse index 2n − 1, since under assumption (A), J (( ỹ)∞) � J ((z)∞) for all z ∈ K+

2 .
It follows that ∂(W u( ỹ)∞) = 0, and hence W u( ỹ)∞ defines a cycle in C2n(X∞) the group of 2n-dimensional chains of
X∞ = ⋃

y∈K+∗ Wu(y)∞. Note that X∞ is a stratified set of top dimension 2n, since the highest Morse index of critical points

at infinity (y)∞ where y ∈ K+∗ , is less than or equal to 2n. But, W u( ỹ)∞ cannot be in the boundary of a 2n-dimensional
chain of X∞ . Therefore W u( ỹ)∞ defines a homological class of dimension 2n which is nontrivial in X∞ . Denoting by
H2n(X∞) the 2n-dimensional homology group of X∞ , we then have

H2n
(

X∞) �= 0. (8)

Using the same arguments and notations of the proof of Theorem 1.1, we derive that X∞ is contractible in J S+η which
retracts by deformation on X∞ . It follows that X∞ is a contractible set, and therefore Hk(X∞) = 0, ∀k � 1, which is in
contradiction with (8). This ends the proof of Theorem 1.3. �
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