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RESUME

Dans cette Note, on donne deux nouveaux résultats perturbatifs pour préscrire la courbure
scalaire de Webster sur la sphére de dimension (2n+ 1) munie de sa structure CR standard.
Le premier résultat généralise celui obtenu par A. Malchiodi et F. Uguzzoni (2002) dans [9].

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this Note, we revisit a problem of geometric origin. Namely, let S?n*+1 be the unit sphere of (C”“_ defined by
Sl = (¢ = (1., ™) e Ol = Z'}I} |¢4]? = 1} endowed with its standard contact form 6 =i(d — 9)|¢|*> =
12'}2} cidzi —zidei. The Webster scalar curvature problem resumes to find a contact form 6 CR equivalent to 6 such that
the associated Webster scalar curvature R; = K, where K is some given function on S2n+1 1t is equivalent to find a solution
u of the following problem:

Lu=Ku'*%
’ (1)

u>0 onS?t!

where L = @Ag + "("2—“) is the conformal sub-Laplacian (since the Webster scalar curvature of 6 is Ry = "("Z—H)), and
Ag - denoted also by A, in the literature - is the sub-Laplacian operator (the real part of the Kohn Laplacian [J,) for
(8?1, 9). Note that problem (1) is the CR counterpart of the scalar curvature problem in the Riemannian setting (see e.g.
[2,8,10]).
This problem has been envisaged under perturbation or symmetric hypotheses (see [5] and [9]). Our aim is to handle
such a question using some topological and dynamical tools related to the theory of critical points at infinity (see Bahri [1]).
Let K : S"*1 — R be a C? function. We introduce the following assumption:

(N.D) K has a finite set of nondegenerate critical points, denoted by K, such that AyK(y) #0, Vy € K.
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We introduce the subset:

Kt =|yek: —A¢K(y) >0}, )
and we denote by (C.C) the condition:
(C.C) Assume that K(¢) =1+ &Ko(¢), V¢ € S?1, where Ko € C2(S*™*1) and |e| small.

Let ind(K, y) be the Morse index of K at its critical point y. For an integer k, we write k € X, if k satisfies the following
condition: For any y € K+, we have 2n + 1 —ind(K, y) #k + 1. That is

N={keN/VyeK", 2n+1—ind(K,y) #k+1}. (3)

For example if k >2n+ 1 then k e X.
Our first existence result generalizes that of [9]:

Theorem 1.1. Let n > 1, K : S"*1 — R a C2 positive function satisfying (N.D) and (C.C). If

r}{‘leag( 1— Z (_1)2n+1—ind(K,y) #0 (4)

yek+t
2n+1—ind(K,y)<k

then, for |&| small enough, there exists a solution for problem (1).
As a corollary we find the result of [9]:

Corollary 1.2. Letn > 1. K : S?™+1 — R a C? positive function satisfying (N.D) and (C.C). If
Z (_1)2n+1—ind(K,y) ?é -17 (5)

yek+

then, for |e| small enough, there exists a solution for problem (1).
Our second existence result is not based on the count-indices formula. We introduce
forpeN, Kj={yek’ indK,y)=p}, and Kf=K'\Kj. (6)
Theorem 1.3. Let n > 1, K : S*"*!1 — R a C? positive function satisfying (N.D), (C.C), and (A) 3y € KT, such that, K(¥) > K (2),

Vze K.
Then, provided that |¢| is small enough, there exists a solution for problem (1).

2. Variational framework. Lack of compactness. Proofs of the results

Let ST be the completion of C*(S?"*1) for the norm [[u[|? = fqnsi Lu.u® Ado". Let )" ={ueS!/u =1} and >* =
{u e /u>0)}. The Euler functional associated to problem (1) on S is:

Jlul®

(Jgznrr Klul>tso Adomymr

Jw) =

One knows that if v is a critical point of J in Z+, then u = ](v)%v is a solution for (1) in S', and hence the contact form
~ 2 .
0 =un6d has its Webster scalar curvature R; =K.

Problem (1) is known to be delicate because the inclusion S «— L@ is continuous but not compact, and the functional
J does not satisfy the Palais-Smale condition. In order to characterize the sequences failing the Palais-Smale condition, we
recall some definitions and notations. Let @ be the solution of Yamabe problem on the Heisenberg group H", defined for
all £ =(z,t) in H" by w(¢) = |1+ |z|? —it|™™. For each (g,1) € H" x (0, 00) we obtain the other solutions W &) =
Mw(rg~1€). Now, for each (a, 1) € S?™t1 x (0, o0), we introduce the solution of Yamabe problem on S2"*1:

San(¢) = W(F@),n © F(&) (7)

1
|1 + {n+1 |n
where F is a biholomorphic map from S***! <\ {apoint(s a)} onto H", induced by the Cayley Transform (see [7,9]). The
sphere is globally CR equivalent to itself, then, standard arguments and results of [3] and [4] (where the case of manifolds
locally CR-equivalent to the sphere was treated) are valid here. Since we are arguing by contradiction we have
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Proposition 2.1. Assume (1) has no solution. The only critical points at infinity of J in 3.1 are combinations of q masses (q > 1),
Z?:] 8(yi+o0) i= (V1, -+, ¥q)oo, Where the y;’s are distinct in K.
The Morse index of (y1,...,Yq)oo ISM(Y1,..., ¥g)oo =q— 14+ Z?:l 2n+1—ind(K, y;).

Proof of Theorem 1.1. Since K =1+ €Kp, for ¢ = 0 we obtain the Yamabe functional Jo, which possesses a (2n + 2)-
dimensional manifold of critical points Z = {5 ), (a, 1) € S*™1 x (0, 00)}. For B e R, let J# ={ue Y*, J(u) < B}. Observe
that, since Ko is bounded, J(u) = Jo(u)(1+ O (¢)), where O (¢) is independent of u and tends to 0 with ¢. Readily we derive:

Lemma 2.1. Let 17 > 0, for || small enough, we have 5t C jg“" C JS+3m,

Here S is the best Sobolev constant S = Jo(8(q,»)) = min Jo on Z+. On the other hand, the critical level J((y1, ..., Yq)oo) =
SO 1/K (YD tends to Sq/™tD as & — 0, since K(y;) = 1+ €Ko(yi). Taking n = S/4, we can assume
le| sufficiently small that: critical points at infinity made of two bubbles or more are above the level S + 37, and
those made of a single bubble are below the level S + 5. Therefore, J has no critical points at infinity in the set
Jgifzn ={ue Z+, S+1n < J@) < S+ 3n). Since, arguing by contradiction, we assume that (1) has no solution, it fol-

lows that JS37 ~ JS*1 where ~ denotes retracts by deformation. Using Lemma 2.1, we have that ]SH" ~ JSH1. Now, we

claim that J5*7 is a contractible set. Indeed, from what precedes, it is sufficient to prove that ]3+2" is a contractible set.

Let ug € ngn, and s +— u(s, ug) the Yamabe flow line. The flow verifies the following equation:
u
as
u(0) =up.

Using the results of [6], we know that the Palais-Smale condition is satisfied for the above equation for all s > 0. When
s — 400, u(s, ug) converges to a single mass in Z. Thus, ]g+2" ~ Z. It follows that jg+2” is a contractible set, since Z is
a contractible set. Our claim follows. Now, let £ be the integer for which maxyeyx |1 — Z(ye,ﬁ’m(y)wgk}(—l)m(”w| #0
is achieved. Here m(y)oo = 2n + 1 — ind(K, y) is the Morse index of the critical point at infinity (y)eo. Let X7° =
U{yelctm(y)wge} Wy (¥)so. It is a stratified set of top dimension ¢, and, since it is made of unstable manifolds of criti-
cal points at infinity of a single mass, we derive from what precedes that Xj° C J S+, Observe that Xg° is contractible in
J5*7, since J5t" is a contractible set. More precisely, there exists a contraction h : [0, 1] x X2 — J5*N, ie. h continuous
and such that h(0,u) =u and h(1,u) =1 a fixed point in X7°. Let H = h([0, 1] x X{°). H is a contractible stratified set of
dimension £ + 1. Using the flow lines of —4 J, and the fact that H  J5*7, we have H ~ U{yEIC+,m(y)oc<£+1) Wy (¥)oo. Now,
using the fact that £ € R, there are no critical points at infinity of Morse index £ -+ 1. We derive that H ~ X°. Then, taking
the Euler characteristic of both sides, we derive that 1 = Z{yeIC‘*' ”(—1)’"(”%. This contradicts the assumption of
Theorem 1.1. O

,M(Y)oo <

Proof of Theorem 1.3. Arguing by contradiction, we assume that (1) has no solution. Let d be the boundary operator in the
sense of Floer-Milnor homology as introduced in [11]. We recall that singular chains, in this homology, are generated by
unstable manifolds of critical points of J, and, if (y) is a critical point at infinity of Morse index m(y)oo, then

Wy (y)eo) = > i(Voor (Doo) Wu (@)oo

{(@oos M2)oo=m(y)oo—1}

where i((¥)oo, (2)00) is the intersection number of W, (¥)so and Ws(z)o, the unstable (resp. stable) manifold of (y)so (resp.
(2)0 ), With respect of —3 ] (see [11]).

Taking y = y, defined in assumption (A) of Theorem 1.3, W, (¥)~ is a manifold of dimension m(y)s, = 2n, and satisfies
Wy (¥)oo NWs(2)oo =@ for any (z)oo of Morse index 2n — 1, since under assumption (A), J((¥)eo) < J((2)o0) for all z e IC;r
It follows that d(Wy,(¥)s) = 0, and hence W, (J)o defines a cycle in C2,(X*°) the group of 2n-dimensional chains of
X = Uye,q Wy (¥)so. Note that X*° is a stratified set of top dimension 2n, since the highest Morse index of critical points

at infinity (y)oo where y € K, is less than or equal to 2n. But, Wy (J)oo cannot be in the boundary of a 2n-dimensional
chain of X°. Therefore W,(¥)s defines a homological class of dimension 2n which is nontrivial in X*°. Denoting by
H2,(X®°) the 2n-dimensional homology group of X°°, we then have

Haq(X*°) #0. (8)

Using the same arguments and notations of the proof of Theorem 1.1, we derive that X* is contractible in J5*7 which
retracts by deformation on X°. It follows that X°° is a contractible set, and therefore Hy(X°°) =0, Vk > 1, which is in
contradiction with (8). This ends the proof of Theorem 1.3. O
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