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This Note is devoted to the test of instantaneous linear Granger causality when the errors
are dependent but uncorrelated. The assumptions are weak and include a large set of
dynamics as for instance the GARCH processes. We show that the standard Wald test
for testing instantaneous linear Granger causality is not valid in our framework. As a
consequence Wald tests which are valid in our framework are proposed.
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r é s u m é

Dans cette Note on considère le test de la causalité instantanée linéaire au sens de Granger
entre deux variables dans le cas où les innovations sont dépendantes mais non corrélées
(c’est-à-dire des innovations linéaires). Les hypothèses considérées sont faibles et peuvent
prendre en compte des non linéarités comme par exemple celles induites par les processus
GARCH. Nous établissons que la statistique de Wald standard pour tester la causalité
instantanée linéaire n’est pas valide dans notre cadre. En conséquence des tests de Wald
valides sont proposés.

© 2011 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Nonlinear processes are commonly considered in the literature. For instance processes which exhibit nonlinear dynamics
and admit a linear representation with dependent errors are presented in [6], or [1]. Therefore asserting that all the dy-
namics of a time series are captured by a linear model is restrictive in many cases, so that instantaneous linear causality
is often tested in presence of nonlinear dynamics of unknown form. Weak VAR models (i.e. VAR models with dependent
but uncorrelated errors) were studied by [5]. They established the asymptotic normality of the Ordinary Least Squares (OLS)
estimators. Using this result we propose in this Note modified Wald tests which take into account the important case of
VAR models with dependent but uncorrelated errors. It is found that the test with modified statistic achieves a gain in
power, in the Bahadur sense, when compared to the test with modified asymptotic distribution.
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2. Asymptotic results

Let us consider the VAR model of order p � 0 and dimension d

Xt = A01 Xt−1 + · · · + A0p Xt−p + ut, (1)

where the matrices Ai are such that det A(z) �= 0 for all |z| � 1 with A(z) = Id −∑p
i=1 Ai zi and Id denotes the d ×d identity

matrix. We assume that X1, . . . , XT are observed. The errors are usually assumed iid (Gaussian). However it is well known
in the literature that there are numerous situations where the errors are martingale differences (as for the GARCH models)
or where the optimal predictor of the observed process does not even correspond to the best linear predictor (as when the
innovations are driven by an All-Pass model). Therefore we only assume that the error process is uncorrelated and control
its dependence. Define the mixing coefficients

αa(h) = sup
A∈σ (au,u�t), B∈σ (au ,u�t+h)

∣∣P (A ∩ B) − P (A)P (B)
∣∣,

that measure the temporal dependence of the stationary process (at), and introduce ‖at‖q = (E‖at‖q)1/q , where ‖.‖ denotes
the Euclidean norm with E‖at‖q < ∞.

Assumption A1. (i) The process (ut) is strictly stationary ergodic with positive definite covariance matrix Ωu and such that
Eut = 0, Cov(ut , ut−h) = 0 for all t ∈ Z and all h �= 0.

(ii) The process (ut) satisfies ‖ut‖4+2ν < ∞, and the mixing coefficients of the process (ut) are such that∑∞
h=0{αu(h)}ν/(2+ν) < ∞ for some ν > 0.

Note that the framework given by Assumption A1 is quite general and includes multivariate GARCH models. In particular
the mixing assumption in (ii) is not very restrictive and is valid for a large class of processes (see e.g. [4]).

The parameters of model (1) can be estimated by OLS. Let us introduce the vector of the autoregressive parameters
θ0 = vec(A01, . . . , A0p), X̃t−1 = (X ′

t−1, . . . , X ′
t−p)′ and the OLS estimators θ̂

θ̂ = vec
(
Σ̂Xt , X̃t−1

Σ̂−1
X̃t−1

)
,

where

Σ̂Xt , X̃t−1
= T −1

T∑
t=p+1

Xt X̃ ′
t−1, Σ̂ X̃t−1

= T −1
T∑

t=p+1

X̃t−1 X̃ ′
t−1

and vec(.) correspond to the column vectorization operator of a matrix. We also define Ω̂u = T −1 ∑T
t=1 ût û′

t , where ût =
ut(θ̂) = Xt − ( X̃ ′

t−1 ⊗ Id)θ̂ are the residuals. It is shown in [5] that
√

T (θ̂ − θ0) = O p(1) and Ω̂u − Ωu = op(1) under
Assumption A1.

Introduce Yt = (X1,t, . . . , Xd1,t)
′ of dimension d1 and Zt = (Xd1+1,t , . . . , Xd,t)

′ of dimension d2 = d − d1. We follow the
notations of [8]. Denote by Yt(Xs|s � t) the optimal one step linear predictor of Yt+1 at the date t , based on the information
of the present and the past of the process (Xt). Denote also by Σy(Xs|s � t) the corresponding forecast mean squared error.
Similarly we define Yt(Xs ∪ {Zt+1}|s � t) and Σy(Xs ∪ {Zt+1}|s � t). It is said that there is instantaneous linear causality
between (Yt) and (Zt) if

Σy
(

Xs ∪ {Zt+1}
∣∣s � t

) �= Σy(Xs|s � t).

It is well known that there is no instantaneous linear causality between (Yt) and (Zt) if and only if the components Ω
i j
u

of Ωu with j � d1 and i > d1 are equal to zero. Therefore testing for instantaneous linear causality between (Yt) and (Zt)

amounts to test the following pair of hypotheses:

H0 : R vech(Ωu) = 0 vs R vech(Ωu) �= 0,

where the vech(.) operator stacks the elements on and below the main diagonal of a square matrix and R is a suitable
restriction matrix. The test of instantaneous linear causality between the processes (Yt) and (Zt) in the non-standard frame-
work of Assumption A1 is studied.

In this part we introduce the tests for instantaneous linear causality. Define

Ψs = {
vech

(
E
(
ut u′

t

))
vech

(
E
(
ut u′

t

))′}
and Ψm =

∞∑
E
{

vech
(
ut u′

t

)
vech

(
ut−hu′

t−h

)′}
.

h=−∞
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The matrix Ψs is consistently estimated by Ψ̂s = {vech(Ω̂u)vech(Ω̂u)′} while the matrix Ψm can be consistently estimated
using the HAC estimation method (see [6] and references therein). Let us denote by Ψ̂m such consistent estimator. In the
sequel it is assumed that RΨm R ′ is invertible, so that RΨ̂m R ′ is invertible at least asymptotically.

Now consider the following statistic which is asymptotically distributed as a χ2
d1d2

under the assumption of iid errors

Ss = T δ′
T

(
RΨ̂s R ′)−1

δT ,

where δT = R vech(Ω̂u). Then using the statistic Ss one can define a test for testing instantaneous linear causality with
standard critical values. This standard Wald test will be denoted by W s . We introduce the modified statistic

Sm = T δ′
T

(
RΨ̂m R ′)−1

δT .

The following proposition gives the asymptotic distribution of Sm and highlights that the W s test is in general unreliable

when the innovations are dependent. Weak convergence is denoted by
d→.

Proposition 1. Under Assumption A1 we have

Sm
d→ χ2

d1d2
(2)

and

Ss
d→

d1d2∑
i=1

λi U
2
i , (3)

as T → ∞, where the λi ’s correspond to the eigenvalues of the matrix

� = (
RΨs R ′)−1/2(

RΨm R ′)(RΨs R ′)−1/2

and the Ui ’s are independent N (0,1) variables.

Using the result (2) we can define a modified test based on standard critical values which will be denoted as Wm . If we

assume that the error process is iid we have Ψm = Ψs and � = Id1d2 , so that we retrieve that Ss
d→ χ2

d1d2
. However this is

not the case in general and using the standard Wald test can be quite misleading when the errors are dependent. It is clear
that using the Ψ̂m and Ψ̂s estimators one can define consistent estimators λ̂i of the eigenvalues λi . Then using the result
(3) we introduce a test W̃m based on the statistic Ss which is valid in the framework of Assumption A1. At the asymptotic
level α, this test consists in rejecting the null hypothesis of no instantaneous linear causality between (Yt) and (Zt) if the
p-value is such that

P

(
Ss <

d1d2∑
i=1

λ̂i U
2
i

∣∣∣ X1, . . . , XT

)
< α.

Therefore the p-values are computed directly from the data and can be evaluated using the Imhof algorithm [7].

In this part we investigate the power properties of the studied tests. To this aim we use the approximate Bahadur slope
approach [3]. For the tests based on the Ss statistic define qs(x) = P (

∑d1d2
i=1 λi U 2

i > x) for any x > 0. For a fixed alternative
R vechΩu = ω �= 0 consider the asymptotic slope cs(ω) = 2 limT →∞ T −1qs(Ss). Define similarly cm(ω) for the Wm and also
the asymptotic relative efficiency ARESm,Ss (ω) = cm(ω)/cs(ω). A relative efficiency ARESm,Ss (ω) � 1 suggests that the Wm

test is more able to detect the alternative ω than the tests based on the Ss statistic. In such a case the p-values of the Wm

test converge faster to zero than those of the W s and W̃m tests.

Proposition 2. Under Assumption A1 we have ARESm,Ss (ω) � 1 for every ω ∈ R
d1d2 \ {0}.

Note that if we suppose that the errors are iid we obtain ARESm,Ss (ω) = 1 for any alternative ω �= 0 and hence there is
no loss of power in the standard case for the Wm when compared to the W s test in the Bahadur sense. On the other hand
the Wm has a power advantage on the W s in the non-standard case. In addition the Wm which has standard asymptotic
distribution and achieves a gain in power must be preferred to the W̃m test. However it is well known that inverting HAC
matrices in statistics can entail size distortions as pointed out by [2]. Therefore we can expect that the gain in power for
the Wm test comes at the cost of a bad control of type I errors.
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