Partial Differential Equations

A canonical extension of Korn's first inequality to H (Curl) motivated by gradient plasticity with plastic spin

Une extension canonique de l'inégalité de Korn à H (Curl) motivée par un modèle de plasticité à gradient avec rotation plastique

Patrizio Neff, Dirk Pauly, Karl-Josef Witsch
Universität Duisburg-Essen, Fakultät für Mathematik, Campus Essen Universitätsstr. 2, 45117 Essen, Germany

ARTICLE INFO

Article history:

Received 5 July 2011
Accepted 22 September 2011
Available online 23 November 2011
Presented by Philippe G. Ciarlet

A B S TRACT

We prove a Korn-type inequality in $\stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl} ; \Omega, \mathbb{R}^{3 \times 3}\right.$) for tensor fields P mapping Ω to $\mathbb{R}^{3 \times 3}$. More precisely, let $\Omega \subset \mathbb{R}^{3}$ be a bounded domain with connected Lipschitz boundary $\partial \Omega$. Then, there exists a constant $c>0$ such that

$$
\begin{equation*}
c\|P\|_{L^{2}\left(\Omega, \mathbb{R}^{3 \times 3}\right)} \leqslant\|\operatorname{sym} P\|_{L^{2}\left(\Omega, \mathbb{R}^{3 \times 3}\right)}+\|\operatorname{Curl} P\|_{L^{2}\left(\Omega, \mathbb{R}^{3 \times 3}\right)} \tag{1}
\end{equation*}
$$

holds for all tensor fields $P \in \stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl} ; \Omega, \mathbb{R}^{3 \times 3}\right)$, i.e., all $P \in \mathrm{H}\left(\mathrm{Curl} ; \Omega, \mathbb{R}^{3 \times 3}\right)$ with vanishing tangential trace on $\partial \Omega$. Here, rotation and tangential traces are defined row-wise. For compatible P, i.e., $P=\nabla v$ and thus $\operatorname{Curl} P=0$, where $v \in \mathrm{H}^{1}\left(\Omega, \mathbb{R}^{3}\right)$ are vector fields having components v_{n}, for which ∇v_{n} are normal at $\partial \Omega$, the presented estimate (1) reduces to a non-standard variant of Korn's first inequality, i.e.,

$$
c\|\nabla v\|_{L^{2}\left(\Omega, \mathbb{R}^{3 \times 3}\right)} \leqslant\|\operatorname{sym} \nabla v\|_{L^{2}\left(\Omega, \mathbb{R}^{3 \times 3}\right)} .
$$

On the other hand, for skew-symmetric P, i.e., sym $P=0$, (1) reduces to a non-standard version of Poincaré's estimate. Therefore, since (1) admits the classical boundary conditions our result is a common generalization of these two classical estimates, namely Poincaré's resp. Korn's first inequality.
© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Nous démontrons une inégalité de type Korn dans $\stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl} ; \Omega, \mathbb{R}^{3 \times 3}\right)$ pour des champs tensoriels P appliquant Ω dans $\mathbb{R}^{3 \times 3}$. De façon plus précise, soit Ω un domaine borné de \mathbb{R}^{3} dont la frontière $\partial \Omega$ est Lipschitz continue et connexe. Il existe alors une constante $c>0$, telle que

$$
\begin{equation*}
c\|P\|_{L^{2}\left(\Omega, \mathbb{R}^{3 \times 3}\right)} \leqslant\|\operatorname{sym} P\|_{L^{2}\left(\Omega, \mathbb{R}^{3 \times 3}\right)}+\|\operatorname{Curl} P\|_{L^{2}\left(\Omega, \mathbb{R}^{3 \times 3}\right)} \tag{1}
\end{equation*}
$$

est vérifiée pour tous les champs tensoriels $P \in \stackrel{\circ}{\mathrm{H}}\left(\mathrm{Curl} ; \Omega, \mathbb{R}^{3 \times 3}\right)$, i.e., pour tous les $P \in \mathrm{H}\left(\mathrm{Curl} ; \Omega, \mathbb{R}^{3 \times 3}\right)$ dont la trace tangentielle s'annule sur $\partial \Omega$. Ici, rotation et trace tangentielle sont définies ligne par ligne. Pour des champs P compatibles, i.e., $P=\nabla v$, d'où Curl $P=0$, avec $v \in \mathrm{H}^{1}\left(\Omega, \mathbb{R}^{3}\right)$ et de composante v_{n}, telle que ∇v_{n} est normal à $\partial \Omega$,

[^0]l'estimation (1) se réduit à
$$
c\|\nabla v\|_{L^{2}\left(\Omega, \mathbb{R}^{3 \times 3}\right)} \leqslant\|\operatorname{sym} \nabla v\|_{L^{2}\left(\Omega, \mathbb{R}^{3 \times 3}\right)},
$$
une variante non classique de la première inégalité de Korn. Par ailleurs, pour des P antisymétriques, (1) se réduit à une variante non classique de l'inégalité de Poincaré. Il en résulte que puisque (1) est compatible avec les conditions aux limites classiques, cette estimation généralise tout à la fois l'inégalité de Poincaré et la première inégalité de Korn.
© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The motivation for our new estimate is a formulation of infinitesimal gradient plasticity [2]. Our model is taken from Neff et al. [6]. Let $\Omega \subset \mathbb{R}^{3}$ be a bounded domain. The goal is to find the displacement $u:[0, \infty) \times \Omega \mapsto \mathbb{R}^{3}$ and the possibly non-symmetric plastic distortion tensor $P:[0, \infty) \times \Omega \mapsto \mathbb{R}^{3 \times 3}$, such that in $[0, \infty) \times \Omega$

$$
\begin{equation*}
\operatorname{Div} \sigma=f, \quad \sigma=2 \mu \operatorname{sym}(\nabla u-P)+\lambda \operatorname{tr}(\nabla u-P) \mathrm{id}, \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\dot{P} \in \Phi(\Sigma), \quad \Sigma=\sigma-2 \mu \operatorname{sym} P-\mu L_{c}^{2} \text { Curl Curl } P \tag{3}
\end{equation*}
$$

hold. The system is completed by the boundary conditions

$$
\begin{equation*}
u(t, x)=0, \quad v(x) \times P(t, x)=0 \quad \forall(t, x) \in[0, \infty) \times \partial \Omega \tag{4}
\end{equation*}
$$

and the initial condition $P(0, x)=0$ for all $x \in \Omega$. The underlying thermodynamic potential including the plastic gradients in form of the dislocation density tensor Curl P is

$$
\int_{\Omega} \mu|\operatorname{sym}(\nabla u-P)|^{2}+\frac{\lambda}{2}|\operatorname{tr}(\nabla u-P)|^{2}-f \cdot u+\mu|\operatorname{sym} P|^{2}+\frac{\mu}{2} L_{c}^{2}|\operatorname{Curl} P|^{2}
$$

Here, μ, λ are the elastic Lamé moduli and σ is the symmetric Cauchy stress tensor. The system is driven by nonzero body forces denoted by f. The exterior normal to the boundary $\partial \Omega$ is denoted by v and the plastic distortion P is required to satisfy row-wise the homogeneous tangential boundary condition which means that the boundary $\partial \Omega$ is a perfect conductor regarding the plastic distortion. ${ }^{1}$

Moreover, $\Phi: \mathbb{R}^{3 \times 3} \mapsto \mathbb{R}^{3 \times 3}$ is the monotone, multivalued flow-function with $\Phi(0)=0$ and $\Phi\left(\mathbb{R}_{\text {sym }}^{3 \times 3}\right) \subset \mathbb{R}_{\text {sym }}^{3 \times 3}$. In general, Σ is not symmetric even if P is symmetric. Thus, the plastic inhomogeneity is responsible for the plastic spin (the possible non-symmetry of P). The mathematically suitable space for symmetric plastic distortion P is the classical space H (curl; Ω) for each row of $P[10,2]$. This case appears when choosing $\Phi: \mathbb{R}^{3 \times 3} \mapsto \mathbb{R}_{\text {sym }}^{3 \times 3}$.

In the large scale limit $L_{c} \rightarrow 0$ we recover a classical elasto-plasticity model with local kinematic hardening and symmetric plastic strain $\varepsilon_{p}:=\operatorname{sym} P$, since then $\dot{P} \in \mathbb{R}_{\text {sym }}^{3 \times 3}$.

Uniqueness of classical solutions for rate-independent and rate-dependent formulations of this model is shown in [6]. The more difficult existence question for the rate-independent model in terms of a weak reformulation is addressed in [6]. First numerical results for a simplified rate-independent irrotational formulation (no plastic spin, i.e., symmetric plastic distortion P) are presented in [10], cf. [15]. In [3] the model has been extended to rate-independent isotropic hardening based on the concept of a dissipation function defined in terms of the equivalent plastic strain. From a modeling point of view, it is strongly preferable to again have only the symmetric (rate) part of the plastic distortion P appear in the dissipation potential.

The existence and uniqueness can be settled by recasting the model as a variational inequality, if it is possible to define a bilinear form which is coercive with respect to appropriate spaces. This program has been achieved for other variants of the model in [3]. It had to remain basically open for the above system (2)-(4). In this case, the appropriate space for the plastic distortion P is the completion ${ }^{\circ}{ }_{\text {sym }}(\mathrm{Curl} ; \Omega)$ of the linear space

$$
\left\{P \in \mathrm{C}^{\infty}\left(\bar{\Omega}, \mathbb{R}^{3 \times 3}\right): P_{n} \text { normal at } \partial \Omega, n=1,2,3\right\}
$$

with respect to the norm $\left\|\|\cdot\|\right.$, where P_{n} are the columns of P^{T} and

$$
\|P\|^{2}:=\|\operatorname{sym} P\|_{\mathrm{L}^{2}(\Omega)}^{2}+\|\operatorname{Curl} P\|_{\mathrm{L}^{2}(\Omega)}^{2}
$$

Despite first appearance, this quadratic form indeed defines a norm as shown in [6]. Thus $\stackrel{\circ}{\mathrm{H}}_{\text {sym }}(\mathrm{Curl} ; \Omega)$ is a Hilbert-space. However, in this space it is not immediately obvious how to define a linear and bounded tangential trace operator. Since only $\|\operatorname{sym} P\|_{L^{2}(\Omega)}$ appears, it is also not clear, how to control the skew-symmetric part of P. Therefore, the crucial embedding

[^1]$$
\stackrel{\circ}{\mathrm{H}}_{\text {sym }}(\operatorname{Curl} ; \Omega) \subset \mathrm{L}^{2}(\Omega)
$$
is not clear as well. As a consequence of our main results of this note, i.e., Theorems 1 and 2 , we obtain that nevertheless and fortunately
$$
\stackrel{\circ}{\mathrm{H}}_{\text {sym }}(\operatorname{Curl} ; \Omega)=\stackrel{\circ}{\mathrm{H}}(\operatorname{Curl} ; \Omega)
$$
holds with equivalent norms in case the domain Ω has a connected Lipschitz boundary.
The result of this note has been announced in [7] and is written down more detailed in [9]. A forthcoming paper [8] will be devoted to the case $\Omega \subset \mathbb{R}^{N}$ using differential forms.

For the proof of our main result (1), i.e., Theorems 1 and 2, we combine techniques from electro-magnetic and elastic theory, namely the Helmholtz decomposition, the Maxwell or Poincaré/Friedrichs' estimate and Korn’s first inequality. Their basic variants are well known results which can be found in many books, e.g., in [4] and the literature cited there. More sophisticated and related versions are presented, e.g., in [11-14,16] for Maxwell's equations and [1,5] for Korn's inequality.

2. Results

Let Ω be a bounded domain in \mathbb{R}^{3} with connected Lipschitz continuous boundary. We will denote the standard Sobolev spaces by $\mathrm{H}(\mathrm{grad} ; \Omega), \mathrm{H}(\mathrm{div} ; \Omega), \mathrm{H}(\operatorname{curl} ; \Omega)$ and introduce the differential operators Grad, Div, Curl as well as the corresponding vector resp. tensor (matrix) field Sobolev spaces
$\mathrm{H}(\mathrm{Grad} ; \Omega), \quad \mathrm{H}(\mathrm{Div} ; \Omega), \quad \mathrm{H}(\mathrm{Curl} ; \Omega)$
canonically by row-wise operation of the usual differential operators grad, div, curl. Equipped with their natural graph norms, these are Hilbert spaces. Furthermore, we define their closed subspaces
$\stackrel{\circ}{\mathrm{H}}(\mathrm{Grad} ; \Omega), \quad \stackrel{\circ}{\mathrm{H}}(\operatorname{Curl} ; \Omega)$
as completion (under the respective norms) of the vector resp. tensor valued space ${ }^{\circ}{ }^{\infty}(\Omega)$. An index 0 at the lower right corner indicates the vanishing of the differential operator, i.e.,

$$
\mathrm{H}\left(\operatorname{Div}_{0} ; \Omega\right):=\{T \in \mathrm{H}(\operatorname{Div} ; \Omega): \operatorname{Div} T=0\}
$$

For tensor fields $T \in \mathrm{H}(\operatorname{Curl} ; \Omega)$ we define the semi-norm $\||\cdot|| |$ by

$$
\|T\|^{2}:=\|\operatorname{sym} T\|_{\mathrm{L}^{2}(\Omega)}^{2}+\|\operatorname{Curl} T\|_{\mathrm{L}^{2}(\Omega)}^{2} .
$$

Theorem 1. There exists a constant $c>0$, such that for all $T \in \stackrel{\circ}{\mathrm{H}}(\mathrm{Curl} ; \Omega)$

$$
\|T\|_{\mathrm{L}^{2}(\Omega)} \leqslant c\|T\| .
$$

Proof. Let $T \in \stackrel{\circ}{\mathrm{H}}(\mathrm{Curl} ; \Omega)$. Applying row-wise the well-known (orthogonal) Helmholtz decomposition, we get $T=\operatorname{Grad} v+S \in \operatorname{Grad} \stackrel{\circ}{\mathrm{H}}(\operatorname{Grad} ; \Omega) \oplus \mathrm{H}\left(\operatorname{Div}_{0} ; \Omega\right)$.

Then, Curl $T=\operatorname{Curl} S$ and we observe $S \in \stackrel{\circ}{\mathrm{H}}(\operatorname{Curl} ; \Omega) \cap \mathrm{H}\left(\operatorname{Div}_{0} ; \Omega\right)$ since

By Poincaré/Friedrichs' estimate, there exists a constant $c_{p f}>0$ independent of S and T, such that

$$
\begin{equation*}
\|S\|_{\mathrm{L}^{2}(\Omega)} \leqslant c_{p f}\|\operatorname{Curl} T\|_{\mathrm{L}^{2}(\Omega)} . \tag{5}
\end{equation*}
$$

Then, by Korn's first inequality we obtain easily

$$
\|T\|_{\mathrm{L}^{2}(\Omega)}^{2}=\|\operatorname{Grad} v\|_{\mathrm{L}^{2}(\Omega)}^{2}+\|S\|_{\mathrm{L}^{2}(\Omega)}^{2} \leqslant 2\|\operatorname{sym} \operatorname{Grad} v\|_{\mathrm{L}^{2}(\Omega)}^{2}+\|S\|_{\mathrm{L}^{2}(\Omega)}^{2} \leqslant 4\|\operatorname{sym} T\|_{\mathrm{L}^{2}(\Omega)}^{2}+5\|S\|_{\mathrm{L}^{2}(\Omega)}^{2}
$$

and (5) completes the proof.

We note that $c \leqslant \max \left\{2, \sqrt{5} c_{p f}\right\}$. The immediate consequence is

Theorem 2. On $\stackrel{\circ}{\mathrm{H}}(\mathrm{Curl} ; \Omega)$ the norms $\|\cdot\|_{\mathrm{H}(\mathrm{Curl} ; \Omega)}$ and $|||\cdot|||$ are equivalent. In particular, ||| $\cdot||\mid$ is a norm on $\stackrel{\circ}{\mathrm{H}}(\mathrm{Curl} ; \Omega)$ and

$$
\exists c>0 \forall T \in \stackrel{\circ}{\mathrm{H}}(\operatorname{Curl} ; \Omega) \quad c\|T\|_{\mathrm{H}(\operatorname{Curl} ; \Omega)} \leqslant\|\operatorname{sym} T\|_{\mathrm{L}^{2}(\Omega)}+\|\operatorname{Curl} T\|_{\mathrm{L}^{2}(\Omega)} .
$$

Finally we note that
Remark 3. The estimate in Theorem 1, i.e.,

$$
\|T\|_{\mathrm{L}^{2}(\Omega)} \leqslant c\left(\|\operatorname{sym} T\|_{\mathrm{L}^{2}(\Omega)}^{2}+\|\operatorname{Curl} T\|_{\mathrm{L}^{2}(\Omega)}^{2}\right)^{1 / 2}
$$

is a common formulation of Korn's first and Poincaré's inequality.
(i) If Curl $T=0$, we obtain Korn's first inequality. This, i.e.,

$$
\|T\|_{\mathrm{L}^{2}(\Omega)} \leqslant c\|\operatorname{sym} T\|_{\mathrm{L}^{2}(\Omega)}
$$

holds e.g. for tensor fields $T \in \stackrel{\circ}{\mathrm{H}}\left(\operatorname{Curl}_{0} ; \Omega\right)$ or $T=\operatorname{Grad} v$ with vector fields $v \in \stackrel{\circ}{\mathrm{H}}(\mathrm{Grad} ; \Omega)$.
(ii) If sym $T=0$, Poincaré's inequality appears. For skew-symmetric tensor fields $T \in \stackrel{\circ}{\mathrm{H}}$ (Curl; Ω) we have

$$
\|T\|_{\mathrm{L}^{2}(\Omega)} \leqslant c\|\operatorname{Curl} T\|_{\mathrm{L}^{2}(\Omega)} \leqslant 2 c\|\nabla T\|_{\mathrm{L}^{2}(\Omega)} .
$$

References

[1] P.G. Ciarlet, On Korn's inequality, Chinese Ann. Math. 31B (5) (2010) 607-618.
[2] J.K. Djoko, F. Ebobisse, A.T. McBride, B.D. Reddy, A discontinuous Galerkin formulation for classical and gradient plasticity. Part 1: Formulation and analysis, Comput. Methods Appl. Mech. Engrg. 196 (37) (2007) 3881-3897.
[3] F. Ebobisse, P. Neff, Rate-independent infinitesimal gradient plasticity with isotropic hardening and plastic spin, Math. Mech. Solids 15 (2010) $691-703$.
[4] R. Leis, Initial Boundary Value Problems in Mathematical Physics, Teubner, Stuttgart, 1986.
[5] P. Neff, On Korn's first inequality with nonconstant coefficients, Proc. Roy. Soc. Edinburgh A 132 (2002) 221-243.
[6] P. Neff, K. Chełmiński, H.D. Alber, Notes on strain gradient plasticity. Finite strain covariant modelling and global existence in the infinitesimal rateindependent case, Math. Mod. Meth. Appl. Sci. (M3AS) 19 (2) (2009) 1-40.
[7] P. Neff, D. Pauly, K.-J. Witsch, A Korn's inequality for incompatible tensor fields, in: Proceedings in Applied Mathematics and Mechanics (PAMM), 2011.
[8] P. Neff, D. Pauly, K.-J. Witsch, Maxwell meets Korn: A new coercive inequality for tensor fields in $\mathbb{R}^{N \times N}$ with square-integrable exterior derivative, Math. Methods Appl. Sci., submitted for publication, http://arxiv.org/abs/1105.5013; Preprint SE-E-737, Universität Duisburg-Essen, Schriftenreihe der Fakultät für Mathematik, 2011, http://www.uni-due.de/mathematik/preprints.shtml.
[9] P. Neff, D. Pauly, K.-J. Witsch, Poincaré meets Korn via Maxwell, J. Math. Sci. (N.Y.), submitted for publication, http://arxiv.org/abs/1106.4731; Preprint SE-E-736, Universität Duisburg-Essen, Schriftenreihe der Fakultät für Mathematik, 2011, http://www.uni-due.de/mathematik/preprints.shtml.
[10] P. Neff, A. Sydow, C. Wieners, Numerical approximation of incremental infinitesimal gradient plasticity, Internat. J. Numer. Methods Engrg. 77 (3) (2009) 414-436, http://www.mathematik.uni-karlsruhe.de/iwrmm/seite/preprints/media.
[11] D. Pauly, Hodge-Helmholtz decompositions of weighted Sobolev spaces in irregular exterior domains with inhomogeneous and anisotropic media, Math. Methods Appl. Sci. 31 (2008) 1509-1543.
[12] R. Picard, An elementary proof for a compact imbedding result in generalized electromagnetic theory, Math. Z. 187 (1984) 151-164.
[13] R. Picard, Some decomposition theorems and their applications to non-linear potential theory and Hodge theory, Math. Methods Appl. Sci. 12 (1990) 35-53.
[14] R. Picard, N. Weck, K.-J. Witsch, Time-harmonic Maxwell equations in the exterior of perfectly conducting, irregular obstacles, Analysis (Munich) 21 (2001) 231-263.
[15] B.D. Reddy, F. Ebobisse, A.T. McBride, Well-posedness of a model of strain gradient plasticity for plastically irrotational materials, Int. J. Plasticity 24 (2008) 55-73.
[16] N. Weck, Maxwell's boundary value problems on Riemannian manifolds with nonsmooth boundaries, J. Math. Anal. Appl. 46 (1974) 410-437.

[^0]: E-mail addresses: patrizio.neff@uni-due.de (P. Neff), dirk.pauly@uni-due.de (D. Pauly), kj.witsch@uni-due.de (K.-J. Witsch).

[^1]: ${ }^{1}$ This homogeneous tangential boundary condition on P is consistent with $v \times \nabla u=0$ on $\partial \Omega$ which follows from $u=0$ on $\partial \Omega$.

