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This Note is devoted to the study of a complete second order differential equation of
elliptic type with variable operators coefficients and Dirichlet inhomogeneous boundary
conditions. We give necessary and sufficient conditions on the data for the existence and
uniqueness of the strict solution by using some natural differentiability assumptions on the
resolvent operators of the square roots characterizing the ellipticity. The techniques used
here are essentially based on the semigroups theory and the fractional powers of linear
operators.
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r é s u m é

Cette Note est consacrée à l’étude d’une équation différentielle complète du second ordre
de type elliptique et à coefficients opérateurs variables avec des conditions aux limites
de Dirichlet non homogènes. On donne des conditions nécessaires et suffisantes sur les
données pour l’existence et l’unicité de la solution stricte en utilisant des hypothèses
naturelles sur la différentiabilité des résolvantes des racines carrées des opérateurs
caractérisant l’ellipticité. Les techniques utilisées ici sont basées essentiellement sur la
théorie des semi-groupes et les puissances fractionnaires d’opérateurs linéaires.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Let us consider some partial differential equations (of elliptic or quasi-elliptic type) such as the two following models:

∂2u

∂x2
(x, y) + b(x, y)

∂u

∂x
(x, y) + a(x, y)

∂2u

∂ y2
(x, y) − λu(x, y) = f (x, y), x ∈ ]0,1[, y ∈ ]c,d[,

(as for the Laplace operator) or

∂2u

∂x2
(x, y) + b(x, y)

∂u

∂x
(x, y) − a(x, y)

∂4u

∂ y4
(x, y) − λu(x, y) = f (x, y), x ∈ ]0,1[, y ∈ ]c,d[,
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(as for the biharmonic operator), a being positive, a and b having Hölderian regularity with respect to x and some other
with respect to y. Under various boundary Dirichlet–Neumann conditions with respect to the variable y (depending on x)
and with data u(0, y) = ϕ(y), u(1, y) = ψ(y), this class of PDE’s can be written, in some complex Banach space X , as the
following complete second order differential equation with variable operator coefficients

u′′(x) + B(x)u′(x) + A(x)u(x) − λu(x) = f (x), x ∈ (0,1), (1)

u(0) = ϕ, u(1) = ψ. (2)

In this problem λ is a positive real number, f ∈ Cθ ([0,1]; X), 0 < θ < 1, ϕ and ψ are some given elements in X ,
(B(x))x∈([0,1]) is a family of bounded linear operators and (A(x))x∈([0,1]) is a family of closed linear operators in X , of
domains D(A(x)) not necessarily dense in X . Put Q (x) = A(x) − λI , λ > 0. Recently, Eq. (1) was treated by many authors:
For the constant case B(x) = B and A(x) = A, see [4].

In the variable case, for x ∈ (0, δ), δ a small real positive number, Eq. (1) with boundary conditions u(0) = ϕ, u′(δ) = ψ

was treated in [5] by using the interpolation spaces, Dunford’s functional calculus and some techniques given in [7]. In this
Note, we give an alternative approach: for each x ∈ [0,1], from assumption (3), the square roots

√−Q (x) are well defined
and K (x) = −√−Q (x) generates an analytic semigroup (e yK (x))y>0, not necessarily strongly continuous in 0 (see [2]).
Therefore, we use this last important property, which was not considered to study Eq. (1), in order to analyze and improve
the study in [5]. This will be done under some natural differentiability assumptions on the resolvent operators of

√−Q (x)
extending the study by [1] in the parabolic case. We also use the Dunford’s functional calculus. We obtain necessary and
sufficient conditions for the existence and uniqueness of the strict solution, by using the square roots −√−Q (x), while
in [5] the authors give, only, a sufficient condition for the existence and uniqueness of the strict solution with the help
of operators Q (x). Observe that this equation (when B(x) ≡ 0) was treated in [3] by the sums of linear operators. In
this work, we present some basic results concerning the properties of the exponential function x �→ e−x

√−Q (x) and its
derivatives which lead to prove our main result (Theorem 1) related to the existence and uniqueness of the strict solution
of problem (1)–(2). Recall that a strict solution is a function u such that u ∈ C2([0,1]; X), u(x) ∈ D(Q (x)) for each x ∈ [0,1],
x �→ Q (x)u(x) ∈ C([0,1]; X) and u satisfies problem (1)–(2). In all this work, we will use the following hypotheses

∃C > 0, ∀z � 0, ∀x ∈ [0,1], ∃(
Q (x) − zI

)−1 ∈ L(X) and
∥∥(

Q (x) − zI
)−1∥∥

L(X)
� C

1 + z
, (3)

∃C > 0: ∀x ∈ [0,1], ∥∥B(x)
∥∥

L(X)
� C . (4)

Here, the term B(x)u′(x) is considered in Eq. (1) as a “perturbation”. Due to (3), there exists a sector (for some small θ1 > 0
and r1 > 0):

Πθ1+ π
2 ,r1

=
{

z ∈ C
∗:

∣∣arg(z)
∣∣ � θ1 + π

2

}
∪ {

z ∈ C: |z| = r1
}
,

such that Πθ1+ π
2 ,r1

⊂ ρ(−(−Q (x))
1
2 ) = ρ(K (x)). Further to Assumptions (3) and (4), we will assume that: for all z ∈

Πθ1+ π
2 ,r1

, the mapping x �→ (K (x) − zI)−1, defined on [0,1], is in C2([0,1], L(X)) and there exist C > 0, ν ∈ ]1/2,1] and
η ∈ ]0,1[ such that ∀z ∈ Πθ1+ π

2 ,r1
, ∀x, s ∈ [0,1],∥∥∥∥ ∂

∂x

(
K (x) − zI

)−1
∥∥∥∥

L(X)

� C

|z|ν , (5)

∥∥∥∥ ∂

∂x

(
K (x) − zI

)−1 − ∂

∂s

(
K (s) − zI

)−1
∥∥∥∥

L(X)

� C |x − s|η
|z|ν , with η + ν − 1 > 0, (6)

∥∥∥∥ ∂2

∂x2

(
K (x) − zI

)−1
∥∥∥∥

L(X)

� C |z|1−ν,

∥∥∥∥ d2

dx2

(
K (x)

)−1 − d2

ds2

(
K (s)

)−1
∥∥∥∥

L(X)

� C |x − s|η, (7)

B(0)(X) ⊂ D
(

K (0)
) = D

(
Q (0)

)
, B(1)(X) ⊂ D

(
K (1)

) = D
(

Q (1)
)
, (8)

d

dx

(
K (x)

)−1
|x=0

(
D

(
K (0)

)) ⊂ D
(

K (0)
)
,

d

dx

(
K (x)

)−1
|x=1

(
D

(
K (1)

)) ⊂ D
(

K (1)
)
. (9)

Now, we are interesting to the construction of the solution. As in [6], when B(x) = 0 and Q (x) = Q is a constant operator
satisfying (3), we will seek a solution u of problem (1)–(2) in the following form

u(x) = exK (x)ξ∗
0 (x) + e(1−x)K (x)ξ∗

1 (x) + 1

2

x∫
0

e(x−s)K (x)(K (x))−1 f ∗(s)ds

+ 1

2

1∫
e(s−x)K (x)(K (x)

)−1
f ∗(s)ds, (10)
x
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where f ∗ is an unknown function in Cβ([0,1]; X) (β is to be determined in ]0,1[). The functions ξ∗
0 and ξ∗

1 are defined by
(for the definition of (I − Z(x))−1 with Z(x) = e2K (x) , see [8], p. 60)

ξ∗
0 (x) = (

I − Z(x)
)−1(

ϕ − eK (x)ψ
) − (I − Z(x))−1

2

1∫
0

esK (x)(K (x)
)−1

f ∗(s)ds

+ (I − Z(x))−1

2

1∫
0

e(2−s)K (x)(K (x)
)−1

f ∗(s)ds,

ξ∗
1 (x) = (

I − Z(x)
)−1(

ψ − eK (x)ϕ
) − (I − Z(x))−1

2

1∫
0

e(1−s)K (x)(K (x)
)−1

f ∗(s)ds

+ (I − Z(x))−1

2

1∫
0

e(1+s)K (x)(K (x)
)−1

f ∗(s)ds.

Proposition 1. Let ϕ ∈ D((K (0))2) and assume (3)–(9). Then,

1. The function x �→ exK (x)ϕ belongs to C([0,1]; X) if and only if ϕ ∈ D(K (0)) and limx→0 exK (x)ϕ = ϕ .
2. The function x �→ d

dx (exK (x))ϕ belongs to Cmin(η,ν)([0,1]; X) and d
dx (exK (x))ϕ → K (0)ϕ , as x → 0.

3. The function x �→ d2

dx2 (exK (x))ϕ belongs to Cmin(η,ν)([0,1]; X). Moreover

d2

dx2

(
exK (x))ϕ → (

K (0)
)2

ϕ − d2

dx2

(
K (x)

)−1
|x=0 K (0)ϕ, as x → 0,

if and only if

(
K (0)

)2
ϕ − d2

dx2

(
K (x)

)−1
|x=0 K (0)ϕ ∈ D

(
K (0)

) = D
(

Q (0)
)
.

4. If ψ ∈ D((K (1))2) and f ∈ Cθ ([0,1]; X),0 < θ < 1, then f ∗ ∈ Cβ([0,1]; X), β = min(θ,η + ν − 1) and

f ∗(0) = f (0) + d2

dx2

(
K (x)

)−1
|x=0 K (0)ϕ + Φ∗

0 (ϕ) + r0
(

f ∗,ψ
)
,

f ∗(1) = f (1) + d2

dx2

(
K (x)

)−1
|x=1 K (1)ψ + Φ∗

1 (ψ) + r1
(

f ∗,ϕ
)
,

where Φ∗
0 (ϕ), r0( f ∗,ψ) ∈ D(K (0)) = D(Q (0)) and Φ∗

1 (ψ), r1( f ∗,ϕ) ∈ D(K (1)) = D(Q (1)).

Observe that the study of the regularity of u′′ is based on the behavior of operators exK (x)ϕ , e(1−x)K (x)ψ and their
derivatives. It is rather complicated to study it near 0 and 1. This leads us to adopt another strategy by introducing new
operators written in terms of semigroups and treating them very carefully in 0 and 1. We must have to establish the
convergence of all integrals obtained here using some techniques as in [1,5] and [9]. Our main result on the existence and
uniqueness of the strict solution is the following:

Theorem 1. Let ϕ ∈ D((K (0))2), ψ ∈ D((K (1))2) and f ∈ Cθ ([0,1]; X), 0 < θ < 1. Then, under Hypotheses (3)–(9), there exists
λ∗ > 0 such that for all λ � λ∗ , the function u given in the representation (10) is the unique strict solution of problem (1)–(2) if and
only if ⎧⎪⎪⎨

⎪⎪⎩

(
K (0)

)2
ϕ + f (0) + d2

dx2

(
K (x)

)−1
|x=0 K (0)ϕ ∈ D

(
K (0)

) = D
(

Q (0)
)
,

(
K (1)

)2
ψ + f (1) + d2

dx2

(
K (x)

)−1
|x=1 K (1)ψ ∈ D

(
K (1)

) = D
(

Q (1)
)
.

(11)

Sketch of the proof of Theorem 1. It is enough to consider the case ψ = 0 and prove that x �→ Q (x)u(x) ∈ C([0,1]; X) if and
only if

(
K (0)

)2
ϕ + f (0) + d2

2

(
K (x)

)−1
|x=0 K (0)ϕ ∈ D

(
K (0)

)
.

dx
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Regarding, for instance, the following singular terms in 0 and occurring in the expression of Q (x)u(x) one has:

(
K (x)

)2
exK (x)ϕ + exK (x) f ∗(0)

= [(
K (x)

)2 − (
K (0)

)2]
exK (x)ϕ + (

K (0)
)2[

exK (x) − exK (0)
]
ϕ

+ [
exK (x) − exK (0)

]
f ∗(0) + (

K (0)
)2

exK (0)ϕ + exK (0) f ∗(0)

= (a) + (b) + (c) + (d) + (e).

By using Proposition 1, one obtains (a), (b) tend to 0, as x tends to 0 and (c) ∈ C([0,1]; X).
In addition

(d) + (e) = exK (0)

[(
K (0)

)2
ϕ + f (0) + d2

dx2

(
K (x)

)−1
|x=0 K (0)ϕ

]
+ exK (0)Φ∗

0 (ϕ) + exK (0)r0
(

f ∗,ψ
)

= (α) + (β) + (γ ).

Proposition 1 again leads to (β), (γ ) ∈ C([0,1]; X) and (α) ∈ C([0,1]; X) if and only if

(
K (0)

)2
ϕ + f (0) + d2

dx2

(
K (x)

)−1
|x=0 K (0)ϕ ∈ D

(
K (0)

) = D
(

Q (0)
)
.

Similarly, one gets the second compatibility condition in (11). Thus, one obtains new results using operators
√−Q (x). These

results improve those related to Eq. (1) and proved in [5] by another method. �
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