

Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Algebra/Homological Algebra

Localising subcategories for cochains on the classifying space of a finite group $\stackrel{\scriptscriptstyle \, \Leftrightarrow}{\scriptscriptstyle \, }$

Sous-catégories localisantes pour les co-chaînes des espaces classifiants de groupes finis

Dave Benson^a, Srikanth B. Iyengar^b, Henning Krause^c

^a Institute of Mathematics, University of Aberdeen, King's College, Aberdeen AB24 3UE, Scotland, UK

^b Department of Mathematics, University of Nebraska, Lincoln, NE 68588, USA

^c Fakultät für Mathematik, Universität Bielefeld, 33501 Bielefeld, Germany

A R T I C L E I N F O

Article history: Received 25 July 2011 Accepted 24 August 2011 Available online 15 September 2011

Presented by the Editorial Board

ABSTRACT

The localising subcategories of the derived category of the cochains on the classifying space of a finite group are classified. They are in one to one correspondence with the subsets of the set of homogeneous prime ideals of the cohomology ring $H^*(G, k)$.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Nous identifions les sous-catégories localisantes de la catégorie dérivée des co-chaînes, à coefficients dans un corps k de caractéristique p, sur l'espace classifiant d'un groupe fini G. Elles sont en correspondance biunivoque avec les sous-ensembles de l'ensemble des idéaux premiers homogènes de l'anneau de co-homologie $H^*(G, k)$.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let *G* be a finite group and *k* a field of characteristic *p*. Let $C^*(BG; k)$ be the cochains on the classifying space *BG*. Using the machinery of Elmendorf, Kříž, Mandell and May [8], one can regard $C^*(BG; k)$ as a strictly commutative *S*-algebra over the field *k*. The derived category $D(C^*(BG; k))$ has thus a structure of a tensor triangulated category via the left derived tensor product $-\bigotimes_{C^*(BG;k)}^{\mathbf{L}}$. The unit for the tensor product is $C^*(BG; k)$.

In this paper we apply techniques and results from [3–6] to classify the localising subcategories of $D(C^*(BG; k))$. More precisely, there is a notion of stratification for triangulated categories via the action of a graded commutative ring which implies that the localising subcategories are parameterised by sets of homogeneous prime ideals [4]. For $D(C^*(BG; k))$ we use the natural action of the endomorphism ring of the tensor identity which is isomorphic to the cohomology algebra $H^*(G, k)$ of the group G.

Theorem 1.1. The derived category $D(C^*(BG; k))$ is stratified by the ring $H^*(G, k)$. This yields a one to one correspondence between the localising subcategories of $D(C^*(BG; k))$ and subsets of the set of homogeneous prime ideals of $H^*(G, k)$.

1631-073X/\$ – see front matter © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2011.08.019

 $^{^{*}}$ The research of the second author was undertaken during a visit to the University of Bielefeld, supported by a research prize from the Humboldt Foundation, and by NSF grant DMS 0903493.

E-mail addresses: iyengar@math.unl.edu (S.B. Iyengar), hkrause@math.uni-bielefeld.de (H. Krause).

It is proved in [6] that there is an equivalence of tensor triangulated categories between $D(C^*(BG; k))$ and the localising subcategory of K(InjkG) generated by the tensor identity. Here, K(InjkG) is the homotopy category of complexes of injective (= projective) *kG*-modules, studied in [6,9].

The main theorem of [5] states that $K(\ln j kG)$ is stratified as a tensor triangulated category by $H^*(G, k)$. Theorem 1.1 is a consequence of a more general result concerning tensor triangulated categories, which is described below.

Let $(\mathsf{T}, \otimes, \mathbb{1})$ be a compactly generated tensor triangulated category, as described in [3, §8], and *R* a graded commutative Noetherian ring acting on T via a homomorphism $R \to \operatorname{End}_{\mathsf{T}}^*(\mathbb{1})$. In this case, for each homogeneous prime ideal \mathfrak{p} of *R* there exists a *local cohomology functor* $\Gamma_{\mathfrak{p}}: \mathsf{T} \to \mathsf{T}$; see [3]. The *support* of an object *X* in T is then defined to be

 $\operatorname{supp}_R X = \{ \mathfrak{p} \in \operatorname{Spec} R \mid \Gamma_{\mathfrak{p}} X \neq 0 \}.$

The condition that T is stratified by the action of R means that assigning a subcategory S of T to its support

$$\operatorname{supp}_R S = \bigcup_{X \in S} \operatorname{supp}_R X$$

yields a bijection between *tensor ideal* localising subcategories of T and subsets of the homogeneous prime ideal spectrum Spec *R* contained in $supp_R T$; see [4, Theorem 4.2]. Theorem 1.1 is thus a special case of the result below that relates tensor ideal localising subcategories of T and the localising subcategories of $Loc_T(1)$, the localising subcategory of T generated by the tensor unit. We note that $Loc_T(1)$ is a compactly generated tensor triangulated category in its own right and that *R* acts on it as well.

Theorem 1.2. Suppose that the Krull dimension of R is finite. If T is stratified by R as a tensor triangulated category, then so is $Loc_T(1)$, and there is a bijection

 $\left\{\begin{array}{l} \text{Tensor ideal localising} \\ \text{subcategories of } \mathsf{T} \end{array}\right\} \xrightarrow{\sim} \left\{\begin{array}{l} \text{Localising subcategories} \\ \text{of } \mathsf{Loc}_\mathsf{T}(\mathbb{1}) \end{array}\right\}.$

It assigns each tensor ideal localising subcategory S of T to $S \cap Loc_T(1)$.

Remark 1.3. The theorem is not true without the assumption that T is stratified by *R*. For example, let T be the derived category of quasi-coherent sheaves on the projective line \mathbb{P}_k^1 . The tensor unit is \mathcal{O} . In this example there are no proper localising subcategories of $\text{Loc}_{\mathsf{T}}(\mathcal{O})$ since $\text{End}^+_{\mathsf{T}}(\mathcal{O}) = k$, while there are many tensor ideal localising subcategories of T.

Remark 1.4. The assumption that the Krull dimension of *R* is finite is artificial, and is used only to ensure that for each $X \in T$ and $\mathfrak{p} \in \operatorname{Spec} R$ the object $\Gamma_{\mathfrak{p}} X$ belongs to $\operatorname{Loc}_{\mathsf{T}}(X)$. One can replace this condition by, for instance, the assumption that T arises as the homotopy category of a Quillen model category [10, §6].

2. Localising subcategories of Loc_T(1)

In this section T is a triangulated category with set-indexed coproducts and the tensor product \otimes provides a symmetric monoidal structure with unit 1 on T, which is exact in each variable and preserves set-indexed coproducts.

The proof of Theorem 1.2 is based on a sequence of elementary lemmas. The first one describes the tensor ideal localising subcategory of T which is generated by a class C of objects; we denote this by $Loc^{\infty}_{T}(C)$.

Lemma 2.1. Let C be a class of objects of T. Then

 $\operatorname{Loc}_{\mathsf{T}}^{\otimes}(\mathsf{C}) = \operatorname{Loc}_{\mathsf{T}}(\{X \otimes Y \mid X \in \mathsf{C}, Y \in \mathsf{T}\}).$

Proof. Set $S = Loc_T(\{X \otimes Y \mid X \in C, Y \in T\})$. It suffices to show that S is tensor ideal. This means that $FS \subseteq S$ for each tensor functor $F = - \otimes Y$, which is an immediate consequence of Lemma 2.2 below. \Box

Lemma 2.2. Let $F: U \rightarrow V$ be an exact functor between triangulated categories that preserves set-indexed coproducts. If C is a class of objects of U, then

 $F \operatorname{Loc}_{U}(C) \subseteq \operatorname{Loc}_{V}(FC).$

Proof. The preimage $F^{-1}Loc_V(FC)$ is a localising subcategory of U containing C. Thus it contains $Loc_U(C)$, and one gets

 $F \operatorname{Loc}_{U}(C) \subseteq FF^{-1} \operatorname{Loc}_{V}(FC) \subseteq \operatorname{Loc}_{V}(FC).$

Lemma 2.3. Let $\Gamma: T \to T$ be a colocalisation functor that preserves set-indexed coproducts. Then for any $X \in T$ and $Y \in Loc_T(1)$, there is a natural isomorphism

$$\Gamma X \otimes Y \xrightarrow{\sim} \Gamma(X \otimes Y).$$

Remark 2.4. There is an analogous result for a localisation functor $L: T \to T$ that preserves set-indexed coproducts: For any $X \in T$ and $Y \in \text{Loc}_{T}(\mathbb{1})$, there is a natural isomorphism $L(X \otimes Y) \xrightarrow{\sim} LX \otimes Y$.

Proof. A colocalisation functor Γ comes with a natural morphism $\Gamma X \to X$. Tensoring this with an object $Y \in \text{Loc}_{\mathsf{T}}(\mathbb{1})$ gives a morphism $\Gamma X \otimes Y \to X \otimes Y$ that factors through the natural morphism $\Gamma(X \otimes Y) \to X \otimes Y$. Here, one uses that $\Gamma X \otimes Y$ belongs to $\Gamma \mathsf{T}$, since the objects $Y' \in \mathsf{T}$ with $\Gamma X \otimes Y' \in \Gamma \mathsf{T}$ form a localising subcategory containing $\mathbb{1}$. The induced morphism $\phi_Y : \Gamma X \otimes Y \to \Gamma(X \otimes Y)$ is an isomorphism. To see this, observe that the objects $Y' \in \mathsf{T}$ such that $\phi_{Y'}$ is an isomorphism form a localising subcategory containing $\mathbb{1}$. \Box

Proposition 2.5. Suppose that the unit $\mathbb{1}$ is compact in T and let $\Gamma: \mathsf{T} \to \mathsf{Loc}_{\mathsf{T}}(\mathbb{1})$ denote the right adjoint of the inclusion $\mathsf{Loc}_{\mathsf{T}}(\mathbb{1}) \to \mathsf{T}$. If S is a localising subcategory of $\mathsf{Loc}_{\mathsf{T}}(\mathbb{1})$, then

 $\operatorname{Loc}_{\mathsf{T}}^{\otimes}(\mathsf{S}) \cap \operatorname{Loc}_{\mathsf{T}}(\mathbb{1}) = \Gamma(\operatorname{Loc}_{\mathsf{T}}^{\otimes}(\mathsf{S})) = \mathsf{S}.$

Proof. We verify each of the following inclusions

 $S \subseteq Loc_T^{\otimes}(S) \cap Loc_T(\mathbb{1}) \subseteq \Gamma(Loc_T^{\otimes}(S)) \subseteq S.$

The first one is clear. Composing the functor Γ with the inclusion $\text{Loc}_{\mathsf{T}}(\mathbb{1}) \to \mathsf{T}$ yields a colocalisation functor that preserves set-indexed coproducts, since $\mathbb{1}$ is compact. For an object X in $\text{Loc}_{\mathsf{T}}^{\otimes}(\mathsf{S}) \cap \text{Loc}_{\mathsf{T}}(\mathbb{1})$, we have $\Gamma X \cong X$. This gives the second inclusion. Applying Lemma 2.3 together with the description of $\text{Loc}_{\mathsf{T}}^{\otimes}(\mathsf{S})$ from Lemma 2.1 yields the third inclusion. \Box

Corollary 2.6. Suppose that the unit $\mathbb{1}$ is a compact object in T. Assigning each localising subcategory S of $\text{Loc}_{T}(\mathbb{1})$ to $\text{Loc}_{T}^{\otimes}(S)$ gives a bijection

 $\left\{ \begin{array}{c} \text{Localising subcategories} \\ \text{of } \text{Loc}_{\mathsf{T}}(\mathbb{1}) \end{array} \right\} \overset{\sim}{\longrightarrow} \left\{ \begin{array}{c} \text{Tensor ideal localising subcategories of} \\ \mathsf{T} \text{ generated by objects from } \text{Loc}_{\mathsf{T}}(\mathbb{1}) \end{array} \right\}.$

Proof. The inverse map sends $U \subseteq T$ to $U \cap Loc_T(1)$. \Box

We are now ready to prove Theorem 1.2. Note that in this T is a compactly generated tensor triangulated category, which entails a host of additional requirements; see [3, §8] for a list.

Proof of Theorem 1.2. It follows from Proposition 2.5 that the assignment

$$S \mapsto Loc_{T}^{\otimes}(S)$$

is an injective map from the localising subcategories of $Loc_T(1)$ to the tensor ideal localising subcategories of T. In general, it is not bijective, as the example of Remark 1.3 shows. However, since T is stratified by *R* as a tensor triangulated category, it follows from [4, §7] that each tensor ideal localising subcategory is generated by a set of objects of the form $\Gamma_p 1$. Since *R* has finite Krull dimension, [4, Theorem 3.4] yields that $\Gamma_p 1$ is in $Loc_T(1)$. Therefore, given a tensor ideal localising subcategory U of T, the localising subcategory

 $\mathsf{U}' = \mathsf{Loc}_{\mathsf{T}}(\{\Gamma_{\mathfrak{p}}\mathbb{1} \mid \mathfrak{p} \in \mathsf{Supp}_{R}\,\mathsf{U}\}) \subseteq \mathsf{Loc}_{\mathsf{T}}(\mathbb{1})$

satisfies $\text{Loc}_{T}^{\infty}(U') = U$. This proves the surjectivity of the assignment. Moreover, we have shown that each localising subcategory of $\text{Loc}_{T}(\mathbb{1})$ is generated by objects of the form $\Gamma_{\mathfrak{p}}\mathbb{1}$, so $\text{Loc}_{T}(\mathbb{1})$ is stratified by the action of *R*; see [4, Theorem 4.2]. \Box

3. The cohomological nucleus

Let $(T, \otimes, \mathbb{1})$ be a compactly generated tensor triangulated category and let R be a graded commutative Noetherian ring acting on T via a homomorphism $R \to \text{End}_{T}^{*}(\mathbb{1})$. Suppose in addition that R has finite Krull dimension.

We define the *cohomological nucleus* of T as the set of homogeneous prime ideals \mathfrak{p} of R such that there exists an object $X \in \mathsf{T}$ satisfying $\operatorname{Hom}_{\mathsf{T}}^*(\mathbb{1}, X) = 0$ and $\Gamma_{\mathfrak{p}}X \neq 0$. This definition is motivated by work of Benson, Carlson, and Robinson in the context of modular group representations [2].

For p in Spec R consider the tensor ideal localising subcategory

 $\Gamma_{\mathfrak{p}}\mathsf{T} = \{Y \in \mathsf{T} \mid Y \cong \Gamma_{\mathfrak{p}}X \text{ for some } X \in \mathsf{T}\}.$

Note that an object $X \in T$ belongs to $\Gamma_p T$ if and only if $\text{Hom}^*_T(C, X)$ is p-local and p-torsion for every compact $C \in T$, by [3, Corollary 4.10]. The result below gives a local description of the cohomological nucleus.

Proposition 3.1. Let p be a homogeneous prime ideal of R. The following conditions are equivalent:

(1) Every object X in T with Hom^{*}_T($\mathbb{1}, X$) = 0 satisfies $\Gamma_{\mathfrak{p}} X = 0$.

(2) One has $\text{Loc}_{\mathsf{T}}(\Gamma_{\mathfrak{p}}\mathbb{1}) = \Gamma_{\mathfrak{p}}\mathsf{T}$.

(3) Every localising subcategory of $\Gamma_{p}T$ is a tensor ideal of T.

Proof. The Krull dimension of *R* is finite, so $\Gamma_{p}X$ is in Loc_T(*X*) for each *X* in T, by [4, Theorem 3.4]. This fact is used without further comment.

 $(1) \Rightarrow (2)$: Set $S = Loc_T(\Gamma_p \mathbb{1})$. Note that $S \subseteq \Gamma_p T$; we claim that equality holds. Indeed, $S \subseteq Loc_T(\mathbb{1})$ and also $Loc_T^{\otimes}(S) = \Gamma_p T$, since $\Gamma_p = \Gamma_p \mathbb{1} \otimes -$. Thus, for any X in $\Gamma_p T$ from Proposition 2.5 one gets an exact triangle $\Gamma X \to X \to X' \to$ with $\Gamma X \in S$ and $Hom_T^*(\mathbb{1}, X) = 0$. Then (1) implies X' = 0 and hence $X \in S$.

(2) \Rightarrow (3): Let S be a localising subcategory of $\Gamma_p T$. Using (2) and the fact that $\Gamma_p T$ is a tensor ideal of T, one has $Loc_T^{\infty}(S) \subseteq Loc_T(1)$. Then it follows, again from Proposition 2.5, that S is a tensor ideal of T.

(3) \Rightarrow (1): Assume Hom⁺_T(1, *X*) = 0; then Hom⁺_T(1, $\Gamma_{\mathfrak{p}}X$) = 0, as 1 is compact. Condition (3) implies that Loc_T($\Gamma_{\mathfrak{p}}1$) = $\Gamma_{\mathfrak{p}}$ T. Thus $\Gamma_{\mathfrak{p}}X$ belongs to Loc_T($\Gamma_{\mathfrak{p}}1$) and therefore also to Loc_T(1). So one obtains Hom⁺_T($\Gamma_{\mathfrak{p}}X$, $\Gamma_{\mathfrak{p}}X$) = 0, which implies $\Gamma_{\mathfrak{p}}X = 0$. \Box

Consider as an example for T the stable module category StMod kG of a finite group G with the canonical action of $R = H^*(G, k)$. We refer to [1,2] for the discussion of two variations of the nucleus, namely the *group theoretic* and the *representation theoretic* nucleus. There it is shown that $\text{Loc}_T(\mathbb{1}) = T$ if and only if the centraliser of every element of order p in G is p-nilpotent and every block is either principal of semisimple, where p denotes the characteristic of the field k.

It is convenient to define for any class C of objects of T

 $C^{\perp} = \{ Y \in \mathsf{T} \mid \operatorname{Hom}_{\mathsf{T}}^{*}(X, Y) = 0 \text{ for all } X \in \mathsf{C} \},\$

 ${}^{\perp}\mathsf{C} = \big\{ X \in \mathsf{T} \ \big| \ \mathrm{Hom}^*_\mathsf{T}(X, Y) = 0 \text{ for all } Y \in \mathsf{C} \big\}.$

Now let $S = Loc_T(1)$. The *representation theoretic nucleus* is by definition

$$\bigcup_{\in \mathsf{S}^{\perp}\cap\mathsf{T}^c}\operatorname{supp}_R X$$

Clearly, this is contained in the cohomological nucleus. It is a remarkable fact that the representation theoretic nucleus is non-empty if $S^{\perp} \neq 0$; this is proved in [1,2]. Moreover, Question 13 of [7] asks whether $S = {}^{\perp}(S^{\perp} \cap T^{c})$. Note that $S = {}^{\perp}(S^{\perp})$ follows from general principles.

Acknowledgements

Х

It is a pleasure to thank Greg Stevenson for helpful comments on this work.

References

- [1] D.J. Benson, Cohomology of modules in the principal block of a finite group, New York J. Math. 1 (1994/1995) 196-205, electronic.
- [2] D.J. Benson, J.F. Carlson, G.R. Robinson, On the vanishing of group cohomology, J. Algebra 131 (1) (1990) 40-73.
- [3] D.J. Benson, S.B. Iyengar, H. Krause, Local cohomology and support for triangulated categories, Ann. Scient. Éc. Norm. Sup. (4) 41 (2008) 575-621.
- [4] D.J. Benson, S.B. Iyengar, H. Krause, Stratifying triangulated categories, J. Topol. 4 (2011) 641-666.
- [5] D.J. Benson, S.B. Iyengar, H. Krause, Stratifying modular representations of finite groups, Ann. of Math. 174 (2011), in press.
- [6] D.J. Benson, H. Krause, Complexes of injective kG-modules, Algebra Number Theory 2 (2008) 1–30.
- [7] J.F. Carlson, The thick subcategory generated by the trivial module, in: Infinite Length Modules, Bielefeld, 1998, in: Trends in Mathematics, Birkhäuser, Basel, 2000, pp. 285–296.
- [8] A.D. Elmendorf, I. Kříž, M.A. Mandell, J.P. May, Rings, Modules and Algebras in Stable Homotopy Theory, Surveys and Monographs, vol. 47, American Mathematical Society, 1996.
- [9] H. Krause, The stable derived category of a Noetherian scheme, Compos. Math. 141 (2005) 1128-1162.
- [10] G. Stevenson, Support theory via actions of tensor triangulated categories, arXiv:1105.4692v1.