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The localising subcategories of the derived category of the cochains on the classifying space
of a finite group are classified. They are in one to one correspondence with the subsets of
the set of homogeneous prime ideals of the cohomology ring H∗(G,k).
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r é s u m é

Nous identifions les sous-catégories localisantes de la catégorie dérivée des co-chaînes, à
coefficients dans un corps k de caractéristique p, sur l’espace classifiant d’un groupe fini G .
Elles sont en correspondance biunivoque avec les sous-ensembles de l’ensemble des idéaux
premiers homogènes de l’anneau de co-homologie H∗(G,k).

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let G be a finite group and k a field of characteristic p. Let C∗(BG;k) be the cochains on the classifying space BG. Using
the machinery of Elmendorf, Kříž, Mandell and May [8], one can regard C∗(BG;k) as a strictly commutative S-algebra over
the field k. The derived category D(C∗(BG;k)) has thus a structure of a tensor triangulated category via the left derived
tensor product −⊗L

C∗(BG;k)−. The unit for the tensor product is C∗(BG;k).
In this paper we apply techniques and results from [3–6] to classify the localising subcategories of D(C∗(BG;k)). More

precisely, there is a notion of stratification for triangulated categories via the action of a graded commutative ring which
implies that the localising subcategories are parameterised by sets of homogeneous prime ideals [4]. For D(C∗(BG;k)) we
use the natural action of the endomorphism ring of the tensor identity which is isomorphic to the cohomology algebra
H∗(G,k) of the group G .

Theorem 1.1. The derived category D(C∗(BG;k)) is stratified by the ring H∗(G,k). This yields a one to one correspondence between
the localising subcategories of D(C∗(BG;k)) and subsets of the set of homogeneous prime ideals of H∗(G,k).
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It is proved in [6] that there is an equivalence of tensor triangulated categories between D(C∗(BG;k)) and the localising
subcategory of K(InjkG) generated by the tensor identity. Here, K(InjkG) is the homotopy category of complexes of injective
(= projective) kG-modules, studied in [6,9].

The main theorem of [5] states that K(InjkG) is stratified as a tensor triangulated category by H∗(G,k). Theorem 1.1 is a
consequence of a more general result concerning tensor triangulated categories, which is described below.

Let (T,⊗,1) be a compactly generated tensor triangulated category, as described in [3, §8], and R a graded commutative
Noetherian ring acting on T via a homomorphism R → End∗

T(1). In this case, for each homogeneous prime ideal p of R
there exists a local cohomology functor Γp: T → T; see [3]. The support of an object X in T is then defined to be

suppR X = {p ∈ Spec R | Γp X �= 0}.
The condition that T is stratified by the action of R means that assigning a subcategory S of T to its support

suppR S =
⋃
X∈S

suppR X

yields a bijection between tensor ideal localising subcategories of T and subsets of the homogeneous prime ideal spectrum
Spec R contained in suppR T; see [4, Theorem 4.2]. Theorem 1.1 is thus a special case of the result below that relates tensor
ideal localising subcategories of T and the localising subcategories of LocT(1), the localising subcategory of T generated by
the tensor unit. We note that LocT(1) is a compactly generated tensor triangulated category in its own right and that R acts
on it as well.

Theorem 1.2. Suppose that the Krull dimension of R is finite. If T is stratified by R as a tensor triangulated category, then so is LocT(1),
and there is a bijection

{
Tensor ideal localising

subcategories of T

}
∼−→

{
Localising subcategories

of LocT(1)

}
.

It assigns each tensor ideal localising subcategory S of T to S ∩ LocT(1).

Remark 1.3. The theorem is not true without the assumption that T is stratified by R . For example, let T be the derived
category of quasi-coherent sheaves on the projective line P

1
k . The tensor unit is O. In this example there are no proper

localising subcategories of LocT(O) since End∗
T(O) = k, while there are many tensor ideal localising subcategories of T.

Remark 1.4. The assumption that the Krull dimension of R is finite is artificial, and is used only to ensure that for each
X ∈ T and p ∈ Spec R the object Γp X belongs to LocT(X). One can replace this condition by, for instance, the assumption
that T arises as the homotopy category of a Quillen model category [10, §6].

2. Localising subcategories of LocT(1)

In this section T is a triangulated category with set-indexed coproducts and the tensor product ⊗ provides a symmetric
monoidal structure with unit 1 on T, which is exact in each variable and preserves set-indexed coproducts.

The proof of Theorem 1.2 is based on a sequence of elementary lemmas. The first one describes the tensor ideal localising
subcategory of T which is generated by a class C of objects; we denote this by Loc⊗

T (C).

Lemma 2.1. Let C be a class of objects of T. Then

Loc⊗
T (C) = LocT

({X ⊗ Y | X ∈ C, Y ∈ T}).
Proof. Set S = LocT({X ⊗ Y | X ∈ C, Y ∈ T}). It suffices to show that S is tensor ideal. This means that F S ⊆ S for each
tensor functor F = − ⊗ Y , which is an immediate consequence of Lemma 2.2 below. �
Lemma 2.2. Let F : U → V be an exact functor between triangulated categories that preserves set-indexed coproducts. If C is a class of
objects of U, then

F LocU(C) ⊆ LocV(F C).

Proof. The preimage F −1 LocV(F C) is a localising subcategory of U containing C. Thus it contains LocU(C), and one gets

F LocU(C) ⊆ F F −1 LocV(F C) ⊆ LocV(F C). �



D. Benson et al. / C. R. Acad. Sci. Paris, Ser. I 349 (2011) 953–956 955
Lemma 2.3. Let Γ : T → T be a colocalisation functor that preserves set-indexed coproducts. Then for any X ∈ T and Y ∈ LocT(1),
there is a natural isomorphism

Γ X ⊗ Y
∼−→ Γ (X ⊗ Y ).

Remark 2.4. There is an analogous result for a localisation functor L: T → T that preserves set-indexed coproducts: For any
X ∈ T and Y ∈ LocT(1), there is a natural isomorphism L(X ⊗ Y )

∼−→ L X ⊗ Y .

Proof. A colocalisation functor Γ comes with a natural morphism Γ X → X . Tensoring this with an object Y ∈ LocT(1)

gives a morphism Γ X ⊗ Y → X ⊗ Y that factors through the natural morphism Γ (X ⊗ Y ) → X ⊗ Y . Here, one uses that
Γ X ⊗ Y belongs to Γ T, since the objects Y ′ ∈ T with Γ X ⊗ Y ′ ∈ Γ T form a localising subcategory containing 1. The
induced morphism φY :Γ X ⊗ Y → Γ (X ⊗ Y ) is an isomorphism. To see this, observe that the objects Y ′ ∈ T such that φY ′ is
an isomorphism form a localising subcategory containing 1. �
Proposition 2.5. Suppose that the unit 1 is compact in T and let Γ : T → LocT(1) denote the right adjoint of the inclusion LocT(1) →
T. If S is a localising subcategory of LocT(1), then

Loc⊗
T (S) ∩ LocT(1) = Γ

(
Loc⊗

T (S)
) = S.

Proof. We verify each of the following inclusions

S ⊆ Loc⊗
T (S) ∩ LocT(1) ⊆ Γ

(
Loc⊗

T (S)
) ⊆ S.

The first one is clear. Composing the functor Γ with the inclusion LocT(1) → T yields a colocalisation functor that preserves
set-indexed coproducts, since 1 is compact. For an object X in Loc⊗

T (S) ∩ LocT(1), we have Γ X ∼= X . This gives the second
inclusion. Applying Lemma 2.3 together with the description of Loc⊗

T (S) from Lemma 2.1 yields the third inclusion. �
Corollary 2.6. Suppose that the unit 1 is a compact object in T. Assigning each localising subcategory S of LocT(1) to Loc⊗

T (S) gives a
bijection{

Localising subcategories
of LocT(1)

}
∼−→

{
Tensor ideal localising subcategories of
T generated by objects from LocT(1)

}
.

Proof. The inverse map sends U ⊆ T to U ∩ LocT(1). �
We are now ready to prove Theorem 1.2. Note that in this T is a compactly generated tensor triangulated category, which

entails a host of additional requirements; see [3, §8] for a list.

Proof of Theorem 1.2. It follows from Proposition 2.5 that the assignment

S �−→ Loc⊗
T (S)

is an injective map from the localising subcategories of LocT(1) to the tensor ideal localising subcategories of T. In general,
it is not bijective, as the example of Remark 1.3 shows. However, since T is stratified by R as a tensor triangulated category,
it follows from [4, §7] that each tensor ideal localising subcategory is generated by a set of objects of the form Γp1. Since
R has finite Krull dimension, [4, Theorem 3.4] yields that Γp1 is in LocT(1). Therefore, given a tensor ideal localising
subcategory U of T, the localising subcategory

U′ = LocT
({Γp1 | p ∈ SuppR U}) ⊆ LocT(1)

satisfies Loc⊗
T (U′) = U. This proves the surjectivity of the assignment. Moreover, we have shown that each localising subcate-

gory of LocT(1) is generated by objects of the form Γp1, so LocT(1) is stratified by the action of R; see [4, Theorem 4.2]. �
3. The cohomological nucleus

Let (T,⊗,1) be a compactly generated tensor triangulated category and let R be a graded commutative Noetherian ring
acting on T via a homomorphism R → End∗

T(1). Suppose in addition that R has finite Krull dimension.
We define the cohomological nucleus of T as the set of homogeneous prime ideals p of R such that there exists an object

X ∈ T satisfying Hom∗
T(1, X) = 0 and Γp X �= 0. This definition is motivated by work of Benson, Carlson, and Robinson in the

context of modular group representations [2].
For p in Spec R consider the tensor ideal localising subcategory
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ΓpT = {Y ∈ T | Y ∼= Γp X for some X ∈ T}.
Note that an object X ∈ T belongs to ΓpT if and only if Hom∗

T(C, X) is p-local and p-torsion for every compact C ∈ T, by [3,
Corollary 4.10]. The result below gives a local description of the cohomological nucleus.

Proposition 3.1. Let p be a homogeneous prime ideal of R. The following conditions are equivalent:

(1) Every object X in T with Hom∗
T(1, X) = 0 satisfies Γp X = 0.

(2) One has LocT(Γp1) = ΓpT.
(3) Every localising subcategory of ΓpT is a tensor ideal of T.

Proof. The Krull dimension of R is finite, so Γp X is in LocT(X) for each X in T, by [4, Theorem 3.4]. This fact is used
without further comment.

(1) ⇒ (2): Set S = LocT(Γp1). Note that S ⊆ ΓpT; we claim that equality holds. Indeed, S ⊆ LocT(1) and also Loc⊗
T (S) =

ΓpT, since Γp = Γp1 ⊗ −. Thus, for any X in ΓpT from Proposition 2.5 one gets an exact triangle Γ X → X → X ′ → with
Γ X ∈ S and Hom∗

T(1, X) = 0. Then (1) implies X ′ = 0 and hence X ∈ S.
(2) ⇒ (3): Let S be a localising subcategory of ΓpT. Using (2) and the fact that ΓpT is a tensor ideal of T, one has

Loc⊗
T (S) ⊆ LocT(1). Then it follows, again from Proposition 2.5, that S is a tensor ideal of T.
(3) ⇒ (1): Assume Hom∗

T(1, X) = 0; then Hom∗
T(1,Γp X) = 0, as 1 is compact. Condition (3) implies that LocT(Γp1) =

ΓpT. Thus Γp X belongs to LocT(Γp1) and therefore also to LocT(1). So one obtains Hom∗
T(Γp X,Γp X) = 0, which implies

Γp X = 0. �
Consider as an example for T the stable module category StModkG of a finite group G with the canonical action of

R = H∗(G,k). We refer to [1,2] for the discussion of two variations of the nucleus, namely the group theoretic and the
representation theoretic nucleus. There it is shown that LocT(1) = T if and only if the centraliser of every element of order p
in G is p-nilpotent and every block is either principal or semisimple, where p denotes the characteristic of the field k.

It is convenient to define for any class C of objects of T

C⊥ = {
Y ∈ T

∣∣ Hom∗
T(X, Y ) = 0 for all X ∈ C

}
,

⊥C = {
X ∈ T

∣∣ Hom∗
T(X, Y ) = 0 for all Y ∈ C

}
.

Now let S = LocT(1). The representation theoretic nucleus is by definition⋃
X∈S⊥∩Tc

suppR X .

Clearly, this is contained in the cohomological nucleus. It is a remarkable fact that the representation theoretic nucleus is
non-empty if S⊥ �= 0; this is proved in [1,2]. Moreover, Question 13 of [7] asks whether S = ⊥(S⊥ ∩ Tc). Note that S = ⊥(S⊥)

follows from general principles.
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[8] A.D. Elmendorf, I. Kříž, M.A. Mandell, J.P. May, Rings, Modules and Algebras in Stable Homotopy Theory, Surveys and Monographs, vol. 47, American

Mathematical Society, 1996.
[9] H. Krause, The stable derived category of a Noetherian scheme, Compos. Math. 141 (2005) 1128–1162.

[10] G. Stevenson, Support theory via actions of tensor triangulated categories, arXiv:1105.4692v1.


	Localising subcategories for cochains on the classifying space of a ﬁnite group
	1 Introduction
	2 Localising subcategories of LocT(1)
	3 The cohomological nucleus
	Acknowledgements
	References


