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We decompose the adjoint representation of slr+1 = slr+1(C) by a purely combinatorial
approach based on the introduction of a certain subset of the Weyl group called the Weyl
alternation set associated to a pair of dominant integral weights. The cardinality of the Weyl
alternation set associated to the highest root and zero weight of slr+1 is given by the rth
Fibonacci number. We then obtain the exponents of slr+1 from this point of view.
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r é s u m é

Nous décomposons la représentation adjointe de slr+1 = slr+1(C) par une approche
purement combinatoire basée sur l’introduction d’un certain sous-ensemble du groupe
de Weyl appelé Weyl alternation set associé à une paire de poids intégraux dominants. La
cardinalité de Weyl alternation set associé à la plus haute racine et au poids zéro de slr+1
est donnée par le nombre rth de Fibonacci. Nous obtenons alors les exposants de slr+1 de
ce point de vue.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let G be a simple linear algebraic group over C, and T a maximal algebraic torus in G of dimension r. Let B , T ⊆ B ⊆ G ,
be a choice of Borel subgroup. Then let g, h, and b denote the Lie algebras of G , T , and B respectively. Let Φ be the set
of roots corresponding to (g,h), and let Φ+ ⊆ Φ be the choice of positive roots with respect to b. Let P (g) be the integral
weights with respect to h, and let P+(g) be the dominant integral weights. The theorem of the highest weight asserts
that any finite dimensional complex irreducible representation of g is equivalent to a highest weight representation with
dominant integral highest weight λ, denoted by L(λ). For good general references see [2,3].

Let W = NormG(T )/T denote the Weyl group corresponding to G and T , and for any w ∈ W , let �(w) denote the length
of w . Kostant’s partition function is the non-negative integer valued function, ℘ , defined on h∗ by ℘(ξ) = number of ways
ξ may be written as a non-negative integral sum of positive roots, for ξ ∈ h∗ .

An area of interest in combinatorial representation theory is finding the multiplicity of a weight μ in L(λ). One way to
compute this multiplicity, denoted m(λ,μ), is by Kostant’s weight multiplicity formula [4]:

m(λ,μ) =
∑
σ∈W

(−1)�(w)℘
(
σ(λ + ρ) − (μ + ρ)

)
, (1)
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where ρ = 1
2

∑
α∈Φ+ α. One complication in using (1) to compute multiplicities is that closed formulas for the value of

Kostant’s partition function are not known in much generality. A second complication concerns the exponential growth of
the Weyl group order as r → ∞. In practice, as noted in [1], most terms in Kostant’s weight multiplicity formula are zero
and hence do not contribute to the overall multiplicity. With the aim of describing the contributing terms in (1), we give
the following definition.

Definition 1.1. For λ,μ dominant integral weights of g define the Weyl alternation set to be A(λ,μ) = {σ ∈ W |
℘(σ (λ + ρ) − (μ + ρ)) > 0}.

Thus σ ∈ A(λ,μ) if and only if σ(λ + ρ) − (μ + ρ) is a linear combination with non-negative integral coefficients of
positive roots.

The purpose of this short Note is to demonstrate that the sets A(λ,μ) are combinatorially interesting. To this end, we
let g = slr+1 and prove:

Theorem 1.2. If r � 1 and α̃ is the highest root of slr+1 , then |A(α̃,0)| = Fr , where Fr denotes the rth Fibonacci number.

This result gives rise to a (new) combinatorial identity associated to a Cartan subalgebra of slr+1, which we present in
Section 3. The non-zero weights, μ, of slr+1 are considered in Section 4 from the same point of view.

2. The zero weight space

Let r � 1, and n = r + 1. Let G = SLn(C), g = sln(C), and1 h = {diag[a1, . . . ,an]|a1, . . . ,an ∈ C,
∑n

i=1 ai = 0} be a fixed
choice of Cartan subalgebra. Let b denote the set of n × n upper triangular complex matrices with trace zero. For 1 � i � n,
define the linear functionals εi : h → C by εi(H) = ai , for any H = diag[a1, . . . ,an] ∈ h. The Weyl group, W , is isomorphic to
Sn , the symmetric group on n letters, and acts on h∗ by permutations of ε1, . . . , εn .

For each 1 � i � r, let αi = εi − εi+1. Then the set of simple and positive roots corresponding to (g,b) are � =
{α1, . . . ,αr}, and Φ+ = {εi − ε j | 1 � i < j � n} respectively. The highest root is α̃ = ε1 − εn = α1 + · · · + αr .

Theorem 2.1. Let σ ∈ Sn. Then σ ∈ A(α̃,0) if and only if σ(1) = 1, σ(n) = n, and |σ(i) − i| � 1, for all 1 � i � n.

The following propositions are used in the proof of Theorem 2.1:

Proposition 2.2. Let σ ∈ Sn. Then σ is a product of commuting neighboring transpositions if and only if |σ(i)− i| � 1, for all 1 � i � n.

Proposition 2.3. Let σ = si1 si2 · · · sik , where i1, . . . , ik are non-consecutive integers between 2 and r − 1. Then σ(α̃ + ρ) − ρ =
(ε1 − εi1 ) + (εi1+1 − εi2 ) + · · · + (εik+1 − εn) is a combination of positive roots.

Proof of Theorem 2.1.
(⇒) A proof by contradiction shows σ(1) = 1, and σ(n) = n, while an induction argument shows |i −σ−1(i)| � 1, for all

1 < i < n. Then Proposition 2.2 implies σ−1 = σ , and thus |i − σ(i)| � 1, for all 1 < i < n.
(⇐) Proposition 2.3 implies that reciprocally such an element belongs to A(α̃,0). �

Definition 2.4. The Fibonacci numbers are defined in [7] by the recurrence relation Fn = Fn−1 + Fn−2 for n � 3, and F1 =
F2 = 1.

Proof of Theorem 1.2. The theorem follows from Theorem 2.1, and the fact that if m � 1, then |{σ ∈ Sm: |σ(i) − i| � 1, for
all 1 � i � m}| = Fm+1. �
3. A q-analog

The q-analog of Kostant’s partition function is the polynomial valued function, ℘q , defined on h∗ by ℘q(ξ) = c0 + c1q +
· · · + ckqk , where c j = number of ways to write ξ as a non-negative integral sum of exactly j positive roots, for ξ ∈ h∗ . In
[6], Lusztig introduced the q-analog of Kostant’s weight multiplicity formula:

mq(λ,μ) =
∑
σ∈W

(−1)�(σ )℘q
(
σ(λ + ρ) − (μ + ρ)

)
.

1 diag[a1, . . . ,an] is the diagonal n × n matrix whose entries are a1, . . . ,an .
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Given g, a simple Lie algebra of rank r with highest root α̃, it is known that mq(α̃,0) = ∑r
i=1 qei , where e1, . . . , er

are the exponents of g, [5]. The following results and identities together with the Weyl alternation set A(α̃,0) lead to a
combinatorial proof of this result for slr+1, whose exponents are 1,2, . . . , r.

Lemma 3.1. The cardinality of the set {σ ∈ A(α̃,0): �(σ ) = k} is
(r−1−k

k

)
, and max{�(σ ): σ ∈ A(α̃,0)} = 	 r−1

2 
.

Proposition 3.2. If σ ∈ A(α̃,0), then ℘q(σ (α̃ + ρ) − ρ) = q1+�(σ )(1 + q)r−1−2�(σ ) .

Proof. Let σ ∈ A(α̃,0). An induction argument on �(σ ), shows that if i � 0, then, c�(σ )+1+i , the coefficient of

q�(σ )+1+i in ℘q(σ (α̃ + ρ) − ρ) is given by
(r−1−2�(σ )

i

)
. Thus ℘q(σ (α̃ + ρ) − ρ) = ∑r−1−2�(σ )

i=0

(r−1−2�(σ )
i

)
q�(σ )+1+i =

q1+�(σ )(1 + q)r−1−2�(σ ) . �
Proposition 3.3. For r � 1,

∑	 r−1
2 


k=0 (−1)k
(r−1−k

k

)
q1+k(1 + q)r−1−2k = ∑r

i=1 qi .

4. Non-zero weight spaces

It is fundamental in Lie theory that the zero weight space is a Cartan subalgebra, and that the non-zero weights of L(α̃),
the adjoint representation of g, are the roots and have multiplicity 1. We visit this from our point of view in the case when
g = slr+1. Let r � 1, and n = r + 1.

Theorem 4.1. If μ ∈ P+(sln) and μ �= 0, then A(α̃,μ) =
{ {1} if μ = α̃,

∅ otherwise.

Recall that given μ ∈ P (sln), there exists w ∈ W and ξ ∈ P+(sln) such that w(ξ) = μ and also recall that weight multi-
plicities are invariant under W (Propositions 3.1.20, 3.2.27 in [2]). Thus it suffices to consider μ ∈ P+(sln). Setting q = 1 in
Proposition 3.3 shows m(α̃,0) = r, while Theorem 4.1 implies m(α̃, α̃) = 1, and m(α̃,μ) = 0, whenever μ ∈ P+(sln)−{0, α̃}.
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