

Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Partial Differential Equations/Optimal Control

A Hamilton–Jacobi PDE in the space of measures and its associated compressible Euler equations

Une EDP de Hamilton–Jacobi dans l'espace des mesures et ses équations d'Euler compressibles associées

Jin Feng¹

Department of Mathematics, University of Kansas, Lawrence, KS 66045, USA

ARTICLE INFO ABSTRACT

Article history: Received 3 January 2011 Accepted after revision 18 August 2011 Available online 8 September 2011

Presented by the Editorial Board

We introduce a class of action integrals defined over probability-measure-valued path space. Minimal action exists in this context and gives weak solution to a compressible Euler equation. We prove that the Hamilton–Jacobi PDE associated with such variational formulation of Euler equation is well posed in viscosity solution sense.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Nous introduisons une classe d'intégrales d'action définies sur l'espace des chemins à valeurs mesures de probabilité. Dans ce contexte l'action minimale existe et donne une solution faible d'une équation d'Euler compressible. Nous montrons que l'équation de Hamilton Jacobi associ'ee à la formulation variationnelle de l'équation d'Euler est bien posée dans le sens des solutions de viscosité.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We denote by $\mathcal{P}_2(\mathbb{R}^d)$ the space of Borel probability measures over \mathbb{R}^d with $\int_{\mathbb{R}^d} |x|^2 \rho(dx) < \infty$ endowed with the Wasserstein 2-metric *d*. $AC(0, T; \mathcal{P}_2(\mathbb{R}^d))$ is the class of $\mathcal{P}_2(\mathbb{R}^d)$ -valued absolute continuous curves. Each $\rho(\cdot)$ in such class satisfies the continuity equation $\dot{\rho} := \partial_t \rho = -\operatorname{div}(\rho u)$ for some *u* (Theorem 8.3.1 of [1]). This equation expresses a conservation of mass property and naturally introduces a class of parameterized curves, which motivates the following notion of tangent space and associated geometric structure on $\mathcal{P}_2(\mathbb{R}^d)$ (Chapter 8 of [1,6]):

$$H_{-1,\rho}(\mathbb{R}^d) := \{ m \in \mathcal{D}'(\mathbb{R}^d) : \|m\|_{-1,\rho} < \infty \}, \quad \|m\|_{-1,\rho}^2 := \sup_{\varphi \in C_c^{\infty}(\mathbb{R}^d)} \{ 2\langle m, \varphi \rangle - \|\varphi\|_{1,\rho}^2 \}.$$
(1)

In the above, $\|\varphi\|_{1,\rho}^2 = \int_{\mathbb{R}^d} |\nabla \varphi|^2 \, d\rho$. It follows that $\int_{\mathbb{R}^d} |u|^2 \, d\rho = \|\dot{\rho}\|_{-1,\rho}^2$. We denote $\overline{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\}$.

Definition 1.1 (*Gradient of a function*). Let $f : \mathcal{P}_2(\mathbb{R}^d) \mapsto \overline{\mathbb{R}}$, $\rho_0 \in \mathcal{P}_2(\mathbb{R}^d)$, and $f(\rho_0)$ be finite. We say that gradient of f at ρ_0 , denoted grad $f(\rho_0)$, exists, if it can be identified as the unique element in $\mathcal{D}'(\mathbb{R}^d)$ satisfying the following property: for

E-mail address: jfeng@math.ku.edu.

¹ The research is supported in part by research grants from Army Research Office and from the American Institute of Mathematics.

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2011.08.013

every $p \in C_c^{\infty}(\mathbb{R}^d)$ and the family of push forward of ρ_0 through the flow generated by ∇p , i.e. $\{\rho^p(t) \in \mathcal{P}_2(\mathbb{R}^d): t \in \mathbb{R}\}$ with $\partial_t \rho^p + \operatorname{div}(\rho^p \nabla p) = 0$ and $\rho^p(0) = \rho_0$, we have $\lim_{t \to 0} t^{-1}(f(\rho^p(t)) - f(\rho^p(0))) =: \langle \operatorname{grad} f(\rho_0), p \rangle$.

Let $R(\rho \| \mu) := \int_{\mathbb{R}^d} d\rho \log \frac{d\rho}{d\mu}$ denote relative entropy, define Gibbs measure $\mu^{\Psi}(dx) := Z_{\Psi}^{-1}e^{-\Psi}$ with $Z_{\Psi} = \int_{\mathbb{R}^d} e^{-\Psi} dx$, and entropy functional $S(\rho) := R(\rho \| \mu^{\Psi})$. It follows then grad $S(\rho) = -\Delta\rho - \operatorname{div}(\rho \nabla \Psi)$ whenever $S(\rho) < \infty$. Let $\psi := |\nabla \Psi|^2 - 2\Delta \Psi$, the Fisher information $I(\rho) := \|\operatorname{grad} S(\rho)\|_{-1,\rho}^2 = \int_{\mathbb{R}^d} \frac{|\nabla \rho|^2}{\rho} dx + \int_{\mathbb{R}^d} \psi \, d\rho$ (Appendix D.6 of [3]). Let $\nu > 0$, we introduce a modified kinetic energy $T(\rho, \dot{\rho}) := \frac{1}{2} \| \dot{\rho} + \nu \operatorname{grad} S(\rho) \|_{-1,\rho}^2$ to reinforce entropy dissipation (see [4] and its appendix). Let potential energy

$$V(\rho) := \int_{\mathbb{R}^d} \phi(x)\rho(\mathrm{d}x) + \frac{1}{2} \iint_{\mathbb{R}^d} \int_{\mathbb{R}^d} \Phi(x-y)\rho(\mathrm{d}x)\rho(\mathrm{d}y) + \int_{\mathbb{R}^d} F(\rho(x)) \,\mathrm{d}x.$$

Without pursuing generality, we assume that Φ , $\phi \in C^1(\mathbb{R}^d)$ have sub-quadratic growth, $\Phi(-x) = \Phi(x)$, $\Psi \in C^4(\mathbb{R}^d)$ is quasiconvex and that the leading order terms for both Ψ and ψ have polynomial growth of order bigger than 2 (e.g. $\Psi(x) = \frac{1}{4}|x|^4 - |x|^2$). Finally, let $F \in C^1$ be such that $|F(r)| \leq cr^{\gamma}$, $|rF'(r)| \leq c(1 + r^{\gamma})$ for some finite $c \geq 0$ and some $\gamma \geq 1$ where $\gamma \in [1, 1 + \frac{2}{d})$ when $d \geq 3$ and $\gamma \in [1, 2)$ when d = 1, 2. For notational convenience, we set $V(\rho) = -\infty$ whenever $\rho \in \mathcal{P}_2(\mathbb{R}^d)$ has no Lebesgue density. The following is a consequence of Sobolev inequality and the fact that $\int_{\mathbb{R}^d} \rho(dx) = 1$. See [4]:

Lemma 1.2. There exists a right continuous nondecreasing sub-linear function $\zeta : \mathbb{R}_+ \mapsto \mathbb{R}_+$ with $|V(\rho)| \leq \zeta(I(\rho))$. Moreover, V is continuous on finite level sets of I.

For $\rho(\cdot) \in AC(0, T; \mathcal{P}_2(\mathbb{R}^d))$ with $S(\rho(0)) < \infty$, by the calculus in [1], $\int_0^T T(\rho, \dot{\rho}) dt = \frac{1}{2} \int_0^T (\|\dot{\rho}\|_{-1,\rho}^2 + \nu^2 I(\rho)) dt + \nu(S(\rho(T)) - S(\rho(0)))$. This observation motivates us considering Lagrangians L and $\hat{L} : \mathcal{P}_2(\mathbb{R}^d) \times \mathcal{D}'(\mathbb{R}^d) \mapsto \mathbb{R} \cup \{+\infty\}$ by L := T - V and $\hat{L} := \frac{1}{2} \|\dot{\rho}\|_{-1,\rho}^2 + \frac{\nu^2}{2}I - V$, where \hat{L} is understood as $+\infty$ when $V = +\infty$. \hat{L} takes value in $\mathbb{R} \cup \{+\infty\}$. L, however, is only well defined when V is bounded from above in bounded sets of $\mathcal{P}_2(\mathbb{R}^d)$ (e.g. $F(r) \leq cr$ for some c > 0 will ensure this). Denote

$$A_T[\rho(\cdot)] := \int_0^T L(\rho, \dot{\rho}) \, \mathrm{d}t, \qquad J_T[\rho(\cdot)] := \int_0^T \hat{L}(\rho, \dot{\rho}) \, \mathrm{d}t, \quad \rho(\cdot) \in C([0, T]; \mathcal{P}_2(\mathbb{R}^d)).$$
(2)

When both A_T and J_T are well defined and $S(\rho(0)) < \infty$, we have the following useful identity: $A_T[\rho(\cdot)] = J_T[\rho(\cdot)] + \nu(S(\rho(T)) - S(\rho(0)))$ for $\rho \in AC(0, T; \mathcal{P}_2(\mathbb{R}^d))$. Action minimizer for A_T and J_T are the same under mild conditions, and solves a compressible Euler equation (Theorem 2.1)

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho u) = 0\\ \partial_t(\rho u) + \operatorname{div}(\rho u \otimes u) + \nabla P(\rho) = -\rho \nabla (\phi + \Phi * \rho) - 2\nu^2 \rho \nabla \left(\frac{\Delta \sqrt{\rho}}{\sqrt{\rho}} - \frac{1}{4}\psi\right)\\ P(\rho) = \rho F'(\rho) - F(\rho). \end{cases}$$
(3)

If (ρ, u) are smooth for (3) to hold in classical sense, then it is also a weak solution as defined below.

Definition 1.3 (*Weak solution*). (ρ, u) is called a weak solution to system (3) if the following holds: $\rho(\cdot) \in AC(0, T; \mathcal{P}_2(\mathbb{R}^d))$ with $S(\rho(T)) + \int_0^T I(\rho(t)) dt < \infty$; $u : (0, T) \times \mathbb{R}^d \mapsto \mathbb{R}^d$ is Borel measurable satisfying $\int_0^T \int_{\mathbb{R}^d} |u(t, x)|^2 \rho(t) dt < \infty$; moreover, $\partial_t \rho + \operatorname{div}(\rho u) = 0$ holds in the distribution sense and

$$\int_{0}^{T} \int_{\mathbb{R}^{d}} \left[u(t,x) \cdot \left(\partial_{t} \xi(t,x) + (u \cdot \nabla) \xi(t,x) \right) \rho(t,x) + P(\rho) \operatorname{div} \xi - \left(\nabla(\phi + \Phi * \rho) \cdot \xi \right) \rho(t,x) \right] \\ + \nu^{2} \left(-\frac{\nabla \rho}{\rho} \cdot D\xi \cdot \frac{\nabla \rho}{\rho} + \Delta \operatorname{div} \xi + \frac{1}{2} \xi \cdot \nabla \psi \right) \rho(t,x) \right] \mathrm{d}x \, \mathrm{d}t = 0,$$

holds for every $\xi \in C_c^{\infty}((0, T) \times \mathbb{R}^d; \mathbb{R}^d)$, where $D\xi = (\partial_i \xi_j)_{(i,j)}$ is a matrix.

A satisfactory Hamilton–Jacobi PDE theory can also be developed (Theorem 2.2), based upon a Hamiltonian induced by the Lagrangian *L*, not the \hat{L} . For $V(\rho) < \infty$ and $n = -\operatorname{div}(\rho \nabla p)$ with $p \in C_c^{\infty}(\mathbb{R}^d)$, let

$$H(\rho, n) := \sup_{m \in H_{-1,\rho}(\mathbb{R}^d)} \left(\langle n, m \rangle_{-1,\rho} - L(\rho, m) \right) = - \left\langle \nu \operatorname{grad} S(\rho), n \right\rangle_{-1,\rho} + \frac{1}{2} \|n\|_{-1,\rho}^2 + V(\rho).$$

We do not attempt to extend *H* to $(\rho, n) \in \mathcal{P}_2(\mathbb{R}^d) \times H_{-1,\rho}(\mathbb{R}^d)$, but rely on a delicate choice of test functions [3,2] to define the equations. Let $D_0 := \{f_0(\rho) = \frac{\theta}{2}d^2(\rho, \gamma) + \epsilon S(\rho) + c$: $c \in \mathbb{R}, \theta > 0, 0 < \epsilon < 2\nu, \gamma \in \mathcal{P}_2(\mathbb{R}^d)\}$ and $D_1 := \{f_1(\gamma) = -\frac{\theta}{2}d^2(\rho, \gamma) - \epsilon S(\gamma) + c$: $c \in \mathbb{R}, \theta > 0, 0 < \epsilon < 2\nu, \rho \in \mathcal{P}_2(\mathbb{R}^d)\}$ Denote $D := D_0 \cup D_1$. For each $f_0 \in D_0$ and ρ in the effective domain of f_0 (i.e. $S(\rho) < \infty$), it can be proved that $\operatorname{grad} f_0(\rho) \in \mathcal{D}'(\mathbb{R}^d)$ exists. Furthermore, if $I(\rho) < \infty$, then $\operatorname{grad} f_0(\rho) \in H_{-1,\rho}(\mathbb{R}^d)$, and by Lemma 1.2, $H(\rho, \operatorname{grad} f_0(\rho))$ is finite. Similar relation also holds for $f_1 \in D_1$. Let $M(\mathcal{P}_2(\mathbb{R}^d); \overline{\mathbb{R}})$ denote the collection of measurable functions from $\mathcal{P}_2(\mathbb{R}^d)$ to $\overline{\mathbb{R}}$. We define operator $H : D \mapsto M(\mathcal{P}_2(\mathbb{R}^d); \overline{\mathbb{R}})$ as follows:

$$Hf(\rho) := \begin{cases} H(\rho, \operatorname{grad} f(\rho)) & \text{when } I(\rho) < \infty \\ -\infty & \text{when } I(\rho) = +\infty, f \in D_0 \\ +\infty & \text{when } I(\rho) = +\infty, f \in D_1. \end{cases}$$
(4)

Lemma 1.4. $Hf_0 : \mathcal{P}_2(\mathbb{R}^d) \mapsto \mathbb{R} \cup \{-\infty\}$ is upper semicontinuous for $f_0 \in D_0$ and $Hf_1 : \mathcal{P}_2(\mathbb{R}^d) \mapsto \mathbb{R} \cup \{+\infty\}$ is lower semicontinuous for $f_1 \in D_1$.

Let $\alpha > 0$ and for simplicity in statement of the results, we restrict attention to $h, g \in C_b(\mathcal{P}_2(\mathbb{R}^d))$. More general results can be found in [4]. By resolvent problem of the Hamilton–Jacobi PDE, we mean

$$f(\rho) - \alpha H f(\rho) = h(\rho), \quad \rho \in \mathcal{P}_2(\mathbb{R}^d).$$
(5)

By Cauchy problem, we mean

$$\partial_t U(t,\rho) = HU(t,\rho), \quad (t,\rho) \in (0,T) \times \mathcal{P}_2(\mathbb{R}^d); \qquad U(0,\rho) = g(\rho) \quad \rho \in \mathcal{P}_2(\mathbb{R}^d). \tag{6}$$

Definition 1.5 (*Resolvent problem*). Let $f \in M(\mathcal{P}_2(\mathbb{R}^d); \overline{\mathbb{R}})$; $|f| \leq \zeta(S)$ for some sub-linear function $\zeta : \mathbb{R}_+ \mapsto \mathbb{R}_+$; f is continuous on finite level sets of S. Then

- (i) *f* is called a viscosity sub-solution to (5) if for each $f_0 \in D_0$ and $\rho_0 \in \mathcal{P}_2(\mathbb{R}^d)$ such that $(f f_0)(\rho_0) = \sup_{\rho \in \mathcal{P}_2(\mathbb{R}^d)} (f f_0)(\rho)$, we have $\alpha^{-1}(f h)(\rho_0) \leq Hf_0(\rho_0)$.
- (ii) *f* is called a super-solution to (5) if for each $f_1 \in D_1$ and $\rho_1 \in \mathcal{P}_2(\mathbb{R}^d)$ such that $(f_1 f)(\rho_1) = \sup_{\rho \in \mathcal{P}_2(\mathbb{R}^d)} (f_1 f)(\rho)$, we have $\alpha^{-1}(f h)(\rho_1) \ge Hf_1(\rho_1)$.
- If f is both sub- and super-solutions to (5), we call it a solution.

Definition 1.6 (*Cauchy problem*). Let $U \in M([0, T] \times \mathcal{P}_2(\mathbb{R}^d); \overline{\mathbb{R}})$; $|U(t, \rho)| \leq \zeta(S(\rho))$ for all $(t, \rho) \in [0, T] \times \mathcal{P}_2(\mathbb{R}^d)$ for some sub-linear function $\zeta : \mathbb{R}_+ \mapsto \mathbb{R}_+$; U is continuous on $[0, T] \times K_L$ where $K_L := \{\rho \in \mathcal{P}_2(\mathbb{R}^d): S(\rho) \leq L\}$ for each $L < \infty$. Then

- (i) *U* is called a viscosity sub-solution to (6), if for each $U_0(t, \rho) = \frac{\alpha}{2} |t-s|^2 + f_0(\rho)$, and for each $(t_0, \rho_0) \in [0, T] \times \mathcal{P}_2(\mathbb{R}^d)$ such that $(U U_0)(t_0, \rho_0) = \sup_{(t,\rho) \in [0, T] \times \mathcal{P}_2(\mathbb{R}^d)} (U U_0)(t, \rho)$, we have
 - (a) in the case of $t_0 > 0$, $(-\partial_t U_0 + H U_0)(t_0, \rho_0) \ge 0$;
 - (b) in the case of $t_0 = 0$, $\limsup_{t \to 0^+, \rho' \to \rho_0, S(\rho') \leq C} U(t, \rho') \leq g(\rho_0)$, for every $C \in \mathbb{R}_+$.

(ii) *U* is called a super-solution to (6), if for each $U_1(s, \gamma) = -\frac{\alpha}{2}|t-s|^2 + f_1(\gamma)$ and for each $(s_0, \gamma_0) \in [0, T] \times \mathcal{P}_2(\mathbb{R}^d)$ such that $(U_1 - U)(s_0, \gamma_0) = \sup_{(s,\gamma) \in [0,T] \times \mathcal{P}_2(\mathbb{R}^d)} (U_1 - U)(s, \gamma)$, we have (a) in the case of $s_0 > 0$, $(-\partial_s U_1 + HU_1)(s_0, \gamma_0) \leq 0$; (b) in the case of $s_0 = 0$, $\liminf_{t \to 0+, \gamma' \to \gamma_0, S(\gamma') \leq C} U(t, \gamma') \geq g(\gamma_0)$, for every $C \in \mathbb{R}_+$.

If U is both sub- and super-solutions, we call it a solution.

In view of growth estimate $|f| \leq \zeta(S)$, $\epsilon S(\rho) - f(\rho)$ is understood as $+\infty$, when $S(\rho) = +\infty$. Therefore, $f - f_0$ and $f_1 - f$ are always well defined on $\mathcal{P}_2(\mathbb{R}^d)$. The case of $U - U_0$ and $U_1 - U$ is handled similarly.

2. Main results

Let P_t be the transition probability such that $\rho(t) := P_t \rho_0$ solves Fokker–Planck equation $\partial_t \rho = \Delta \rho + \operatorname{div}(\rho \nabla \Psi)$ with $\rho(0) = \rho_0$. We define $D(\rho_1 \| \rho_0; T) := \inf_{\pi \in \Pi(\rho_0, \rho_1)} R(\pi \| P_{\nu T} \otimes \rho_0)$ where $\Pi(\rho_0, \rho_1) \subset \mathcal{P}_2(\mathbb{R}^d \times \mathbb{R}^d)$ is the class of probability measures on $\mathbb{R}^d \times \mathbb{R}^d$ with first marginal ρ_0 and second marginal ρ_1 . Ref. [4] proves the following:

Theorem 2.1. Let $S(\rho_0) + D(\rho_1 || \rho_0; T) < \infty$. Then there exists a $\rho(\cdot) \in AC(0, T; \mathcal{P}_2(\mathbb{R}^d))$ satisfying $\inf\{J_T[\sigma(\cdot)]: \sigma(\cdot) \in C([0, T]; \mathcal{P}_2(\mathbb{R}^d)), \sigma(0) = \rho_0, \sigma(T) = \rho_1\} = J_T[\rho(\cdot)]$. There exists a Borel vector field $u: (0, T) \times \mathbb{R}^d \mapsto \mathbb{R}^d$ with

$$\int_{0}^{T} \int_{\mathbb{R}^d} \left| u(t,x) \right|^2 \mathrm{d}x \, \mathrm{d}t < \infty$$

such that the pair (ρ, u) is a weak solution (Definition 1.3) to (3). Additionally, if the extra condition $F(r) \leq cr$ holds for some c > 0, then $\inf\{A_T[\sigma(\cdot)]: \sigma(\cdot) \in C([0, T]; \mathcal{P}_2(\mathbb{R}^d)), \sigma(0) = \rho_0, \sigma(T) = \rho_1\} = A_T[\rho(\cdot)] = J_T[\rho(\cdot)] + \nu(S(\rho_1) - S(\rho_0)).$

At least formally, one can show $u = -\nabla \varphi$ for some φ [4]. Therefore, only potential flows are obtained.

Theorem 2.2. There is at most one viscosity solution to (5) (respectively, to (6)) on $E_0 := \{\rho: S(\rho) < \infty\}$ (resp. $[0, T] \times E_0$). If $F(r) \leq cr$ for some c > 0, then $f(\rho_0) := \sup\{\int_0^\infty e^{-\alpha^{-1}s}(\alpha^{-1}h(\rho) - L(\rho, \dot{\rho})) ds: \rho(\cdot) \in C([0, \infty); \mathcal{P}_2(\mathbb{R}^d)), \rho(0) = \rho_0\}$ (resp. $U(t, \rho_0) := \sup\{g(\rho(t)) - \int_0^t L(\rho(s), \dot{\rho}(s)) ds: \rho(0) = \rho_0, \rho(\cdot) \in C([0, \infty); \mathcal{P}_2(\mathbb{R}^d))\}$) is such a solution. Moreover, if $|\int_{\mathbb{R}^d} F(\rho(x)) dx| \leq \zeta(S(\rho))$ for some sub-linear ζ , then the existence-uniqueness and continuity of solution above can be extended to $\mathcal{P}_2(\mathbb{R}^d)$.

In the case of $V \equiv 0$, Theorem 2.2 also follows from results in [3,2]. A version of Theorem 2.1 also appears in mean-field game theory [5] using a different formulation (at individual particle level).

References

- [1] L. Ambrosio, G.N. Gigli, G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005.
- [2] J. Feng, M. Katsoulakis, A comparison principle for Hamilton-Jacobi equations related to controlled gradient flows in infinite dimensions, Arch. Ration. Mech. Anal. 192 (2) (2009) 275-310.
- [3] J. Feng, T. Kurtz, Large Deviation for Stochastic Processes, Mathematical Surveys and Monographs, vol. 131, American Mathematical Society, Providence, RI, 2006.
- [4] J. Feng, T. Nguyen, Hamilton-Jacobi equations in space of measures associated with a system of conservation laws, Preprint, 2010.
- [5] J.M. Lasry, P.-L. Lions, Mean field games, Japanese J. Math. 2 (1) (2007) 229-260.
- [6] C. Villani, Optimal Transport. Old and New, Fundamental Principles of Mathematical Sciences, vol. 338, Springer-Verlag, Berlin, 2009.