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We introduce a class of action integrals defined over probability-measure-valued path
space. Minimal action exists in this context and gives weak solution to a compressible
Euler equation. We prove that the Hamilton–Jacobi PDE associated with such variational
formulation of Euler equation is well posed in viscosity solution sense.
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r é s u m é

Nous introduisons une classe d’intégrales d’action définies sur l’espace des chemins à
valeurs mesures de probabilité. Dans ce contexte l’action minimale existe et donne une
solution faible d’une équation d’Euler compressible. Nous montrons que l’équation de
Hamilton Jacobi associ’ee à la formulation variationnelle de l’équation d’Euler est bien
posée dans le sens des solutions de viscosité.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We denote by P2(R
d) the space of Borel probability measures over R

d with
∫

Rd |x|2ρ(dx) < ∞ endowed with the Wasser-
stein 2-metric d. AC(0, T ; P2(R

d)) is the class of P2(R
d)-valued absolute continuous curves. Each ρ(·) in such class satisfies

the continuity equation ρ̇ := ∂tρ = −div(ρu) for some u (Theorem 8.3.1 of [1]). This equation expresses a conservation of
mass property and naturally introduces a class of parameterized curves, which motivates the following notion of tangent
space and associated geometric structure on P2(R

d) (Chapter 8 of [1,6]):

H−1,ρ

(
R

d) := {
m ∈ D′(

R
d): ‖m‖−1,ρ < ∞}

, ‖m‖2−1,ρ := sup
ϕ∈C∞

c (Rd)

{
2〈m,ϕ〉 − ‖ϕ‖2

1,ρ

}
. (1)

In the above, ‖ϕ‖2
1,ρ = ∫

Rd |∇ϕ|2 dρ . It follows that
∫

Rd |u|2 dρ = ‖ρ̇‖2−1,ρ . We denote R := R ∪ {±∞}.

Definition 1.1 (Gradient of a function). Let f : P2(R
d) 
→ R, ρ0 ∈ P2(R

d), and f (ρ0) be finite. We say that gradient of f at ρ0,
denoted grad f (ρ0), exists, if it can be identified as the unique element in D′(Rd) satisfying the following property: for
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every p ∈ C∞
c (Rd) and the family of push forward of ρ0 through the flow generated by ∇p, i.e. {ρ p(t) ∈ P2(R

d): t ∈ R}
with ∂tρ

p + div(ρ p∇p) = 0 and ρ p(0) = ρ0, we have limt→0 t−1( f (ρ p(t)) − f (ρ p(0))) =: 〈grad f (ρ0), p〉.

Let R(ρ‖μ) := ∫
Rd dρ log dρ

dμ denote relative entropy, define Gibbs measure μΨ (dx) := Z−1
Ψ e−Ψ with ZΨ = ∫

Rd e−Ψ dx,

and entropy functional S(ρ) := R(ρ‖μΨ ). It follows then grad S(ρ) = −�ρ − div(ρ∇Ψ ) whenever S(ρ) < ∞. Let ψ :=
|∇Ψ |2 − 2�Ψ , the Fisher information I(ρ) := ‖gradS(ρ)‖2−1,ρ = ∫

Rd
|∇ρ|2

ρ dx + ∫
Rd ψ dρ (Appendix D.6 of [3]). Let ν > 0,

we introduce a modified kinetic energy T (ρ, ρ̇) := 1
2 ‖ρ̇ + νgradS(ρ)‖2−1,ρ to reinforce entropy dissipation (see [4] and its

appendix). Let potential energy

V (ρ) :=
∫

Rd

φ(x)ρ(dx) + 1

2

∫

Rd

∫

Rd

Φ(x − y)ρ(dx)ρ(dy) +
∫

Rd

F
(
ρ(x)

)
dx.

Without pursuing generality, we assume that Φ,φ ∈ C1(Rd) have sub-quadratic growth, Φ(−x) = Φ(x), Ψ ∈ C4(Rd) is quasi-
convex and that the leading order terms for both Ψ and ψ have polynomial growth of order bigger than 2 (e.g. Ψ (x) =
1
4 |x|4 − |x|2). Finally, let F ∈ C1 be such that |F (r)| � crγ , |r F ′(r)| � c(1 + rγ ) for some finite c � 0 and some γ � 1 where
γ ∈ [1,1 + 2

d ) when d � 3 and γ ∈ [1,2) when d = 1,2. For notational convenience, we set V (ρ) = −∞ whenever ρ ∈
P2(R

d) has no Lebesgue density. The following is a consequence of Sobolev inequality and the fact that
∫

Rd ρ(dx) = 1.
See [4]:

Lemma 1.2. There exists a right continuous nondecreasing sub-linear function ζ : R+ 
→ R+ with |V (ρ)| � ζ(I(ρ)). Moreover, V is
continuous on finite level sets of I .

For ρ(·) ∈ AC(0, T ; P2(R
d)) with S(ρ(0)) < ∞, by the calculus in [1],

∫ T
0 T (ρ, ρ̇)dt = 1

2

∫ T
0 (‖ρ̇‖2−1,ρ + ν2 I(ρ))dt +

ν(S(ρ(T )) − S(ρ(0))). This observation motivates us considering Lagrangians L and L̂ : P2(R
d) × D′(Rd) 
→ R ∪ {+∞} by

L := T − V and L̂ := 1
2 ‖ρ̇‖2−1,ρ + ν2

2 I − V , where L̂ is understood as +∞ when V = +∞. L̂ takes value in R ∪ {+∞}. L,

however, is only well defined when V is bounded from above in bounded sets of P2(R
d) (e.g. F (r) � cr for some c > 0 will

ensure this). Denote

AT
[
ρ(·)] :=

T∫
0

L(ρ, ρ̇)dt, J T
[
ρ(·)] :=

T∫
0

L̂(ρ, ρ̇)dt, ρ(·) ∈ C
([0, T ]; P2

(
R

d)). (2)

When both AT and J T are well defined and S(ρ(0)) < ∞, we have the following useful identity: AT [ρ(·)] = J T [ρ(·)] +
ν(S(ρ(T )) − S(ρ(0))) for ρ ∈ AC(0, T ; P2(R

d)). Action minimizer for AT and J T are the same under mild conditions, and
solves a compressible Euler equation (Theorem 2.1)⎧⎪⎪⎨

⎪⎪⎩

∂tρ + div(ρu) = 0

∂t(ρu) + div(ρu ⊗ u) + ∇ P (ρ) = −ρ∇(φ + Φ ∗ ρ) − 2ν2ρ∇
(

�
√

ρ√
ρ

− 1

4
ψ

)

P (ρ) = ρ F ′(ρ) − F (ρ).

(3)

If (ρ, u) are smooth for (3) to hold in classical sense, then it is also a weak solution as defined below.

Definition 1.3 (Weak solution). (ρ, u) is called a weak solution to system (3) if the following holds: ρ(·) ∈ AC(0, T ; P2(R
d))

with S(ρ(T ))+∫ T
0 I(ρ(t))dt < ∞; u : (0, T )×R

d 
→ R
d is Borel measurable satisfying

∫ T
0

∫
Rd |u(t, x)|2ρ(t)dt < ∞; moreover,

∂tρ + div(ρu) = 0 holds in the distribution sense and

T∫
0

∫

Rd

[
u(t, x) · (∂tξ(t, x) + (u · ∇)ξ(t, x)

)
ρ(t, x) + P (ρ)div ξ − (∇(φ + Φ ∗ ρ) · ξ)

ρ(t, x)

+ ν2
(

−∇ρ

ρ
· Dξ · ∇ρ

ρ
+ �div ξ + 1

2
ξ · ∇ψ

)
ρ(t, x)

]
dx dt = 0,

holds for every ξ ∈ C∞
c ((0, T ) × R

d;R
d), where Dξ = (∂iξ j)(i, j) is a matrix.

A satisfactory Hamilton–Jacobi PDE theory can also be developed (Theorem 2.2), based upon a Hamiltonian induced by
the Lagrangian L, not the L̂. For V (ρ) < ∞ and n = −div(ρ∇p) with p ∈ C∞

c (Rd), let

H(ρ,n) := sup
m∈H (Rd)

(〈n,m〉−1,ρ − L(ρ,m)
) = −〈

ν grad S(ρ),n
〉
−1,ρ

+ 1

2
‖n‖2−1,ρ + V (ρ).
−1,ρ
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We do not attempt to extend H to (ρ,n) ∈ P2(R
d) × H−1,ρ(Rd), but rely on a delicate choice of test functions [3,2] to

define the equations. Let D0 := { f0(ρ) = θ
2 d2(ρ,γ ) + εS(ρ) + c: c ∈ R, θ > 0,0 < ε < 2ν,γ ∈ P2(R

d)} and D1 := { f1(γ ) =
− θ

2 d2(ρ,γ )−εS(γ )+c: c ∈ R, θ > 0,0 < ε < 2ν,ρ ∈ P2(R
d)}. Denote D := D0 ∪ D1. For each f0 ∈ D0 and ρ in the effective

domain of f0 (i.e. S(ρ) < ∞), it can be proved that grad f0(ρ) ∈ D′(Rd) exists. Furthermore, if I(ρ) < ∞, then grad f0(ρ) ∈
H−1,ρ(Rd), and by Lemma 1.2, H(ρ,grad f0(ρ)) is finite. Similar relation also holds for f1 ∈ D1. Let M(P2(R

d);R) denote
the collection of measurable functions from P2(R

d) to R. We define operator H : D 
→ M(P2(R
d);R) as follows:

H f (ρ) :=

⎧⎪⎨
⎪⎩

H
(
ρ,grad f (ρ)

)
when I(ρ) < ∞

−∞ when I(ρ) = +∞, f ∈ D0

+∞ when I(ρ) = +∞, f ∈ D1.

(4)

Lemma 1.4. H f0 : P2(R
d) 
→ R ∪ {−∞} is upper semicontinuous for f0 ∈ D0 and H f1 : P2(R

d) 
→ R ∪ {+∞} is lower semicontin-
uous for f1 ∈ D1 .

Let α > 0 and for simplicity in statement of the results, we restrict attention to h, g ∈ Cb(P2(R
d)). More general results

can be found in [4]. By resolvent problem of the Hamilton–Jacobi PDE, we mean

f (ρ) − αH f (ρ) = h(ρ), ρ ∈ P2
(
R

d). (5)

By Cauchy problem, we mean

∂t U (t,ρ) = HU (t,ρ), (t,ρ) ∈ (0, T ) × P2
(
R

d); U (0,ρ) = g(ρ) ρ ∈ P2
(
R

d). (6)

Definition 1.5 (Resolvent problem). Let f ∈ M(P2(R
d);R); | f | � ζ(S) for some sub-linear function ζ : R+ 
→ R+; f is contin-

uous on finite level sets of S . Then

(i) f is called a viscosity sub-solution to (5) if for each f0 ∈ D0 and ρ0 ∈ P2(R
d) such that ( f − f0)(ρ0) = supρ∈P2(Rd)( f −

f0)(ρ), we have α−1( f − h)(ρ0) � H f0(ρ0).
(ii) f is called a super-solution to (5) if for each f1 ∈ D1 and ρ1 ∈ P2(R

d) such that ( f1 − f )(ρ1) = supρ∈P2(Rd)( f1 − f )(ρ),

we have α−1( f − h)(ρ1) � H f1(ρ1).

If f is both sub- and super-solutions to (5), we call it a solution.

Definition 1.6 (Cauchy problem). Let U ∈ M([0, T ] × P2(R
d);R); |U (t,ρ)| � ζ(S(ρ)) for all (t,ρ) ∈ [0, T ] × P2(R

d) for some
sub-linear function ζ : R+ 
→ R+; U is continuous on [0, T ]× KL where KL := {ρ ∈ P2(R

d): S(ρ) � L} for each L < ∞. Then

(i) U is called a viscosity sub-solution to (6), if for each U0(t,ρ) = α
2 |t − s|2 + f0(ρ), and for each (t0,ρ0) ∈ [0, T ]× P2(R

d)

such that (U − U0)(t0,ρ0) = sup(t,ρ)∈[0,T ]×P2(Rd)(U − U0)(t,ρ), we have
(a) in the case of t0 > 0, (−∂t U0 + HU0)(t0,ρ0) � 0;
(b) in the case of t0 = 0, lim supt→0+,ρ ′→ρ0,S(ρ ′)�C U (t,ρ ′) � g(ρ0), for every C ∈ R+ .

(ii) U is called a super-solution to (6), if for each U1(s, γ ) = −α
2 |t − s|2 + f1(γ ) and for each (s0, γ0) ∈ [0, T ]× P2(R

d) such
that (U1 − U )(s0, γ0) = sup(s,γ )∈[0,T ]×P2(Rd)(U1 − U )(s, γ ), we have
(a) in the case of s0 > 0, (−∂sU1 + HU1)(s0, γ0) � 0;
(b) in the case of s0 = 0, lim inft→0+,γ ′→γ0,S(γ ′)�C U (t, γ ′) � g(γ0), for every C ∈ R+ .

If U is both sub- and super-solutions, we call it a solution.

In view of growth estimate | f | � ζ(S), εS(ρ) − f (ρ) is understood as +∞, when S(ρ) = +∞. Therefore, f − f0 and
f1 − f are always well defined on P2(R

d). The case of U − U0 and U1 − U is handled similarly.

2. Main results

Let Pt be the transition probability such that ρ(t) := Ptρ0 solves Fokker–Planck equation ∂tρ = �ρ + div(ρ∇Ψ ) with
ρ(0) = ρ0. We define D(ρ1‖ρ0; T ) := infπ∈Π(ρ0,ρ1) R(π‖PνT ⊗ρ0) where Π(ρ0,ρ1) ⊂ P2(R

d ×R
d) is the class of probability

measures on R
d × R

d with first marginal ρ0 and second marginal ρ1. Ref. [4] proves the following:
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Theorem 2.1. Let S(ρ0) + D(ρ1‖ρ0; T ) < ∞. Then there exists a ρ(·) ∈ AC(0, T ; P2(R
d)) satisfying inf{ J T [σ(·)]: σ(·) ∈

C([0, T ]; P2(R
d)),σ (0) = ρ0, σ (T ) = ρ1} = J T [ρ(·)]. There exists a Borel vector field u : (0, T ) × R

d 
→ R
d with

T∫
0

∫

Rd

∣∣u(t, x)
∣∣2

dx dt < ∞

such that the pair (ρ, u) is a weak solution (Definition 1.3) to (3). Additionally, if the extra condition F (r) � cr holds for some c > 0,
then inf{AT [σ(·)]: σ(·) ∈ C([0, T ]; P2(R

d)),σ (0) = ρ0, σ (T ) = ρ1} = AT [ρ(·)] = J T [ρ(·)] + ν(S(ρ1) − S(ρ0)).

At least formally, one can show u = −∇ϕ for some ϕ [4]. Therefore, only potential flows are obtained.

Theorem 2.2. There is at most one viscosity solution to (5) (respectively, to (6)) on E0 := {ρ: S(ρ) < ∞} (resp. [0, T ] × E0).
If F (r) � cr for some c > 0, then f (ρ0) := sup{∫ ∞

0 e−α−1s(α−1h(ρ) − L(ρ, ρ̇))ds: ρ(·) ∈ C([0,∞); P2(R
d)),ρ(0) = ρ0}

(resp. U (t,ρ0) := sup{g(ρ(t)) − ∫ t
0 L(ρ(s), ρ̇(s))ds: ρ(0) = ρ0, ρ(·) ∈ C([0,∞); P2(R

d))}) is such a solution. Moreover, if
| ∫

Rd F (ρ(x))dx| � ζ(S(ρ)) for some sub-linear ζ , then the existence-uniqueness and continuity of solution above can be extended to

P2(R
d).

In the case of V ≡ 0, Theorem 2.2 also follows from results in [3,2]. A version of Theorem 2.1 also appears in mean-field
game theory [5] using a different formulation (at individual particle level).
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