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We show that every bounded hyperconvex Reinhardt domain can be approximated by
special polynomial polyhedra defined by homogeneous polynomial mappings. This is
achieved by means of approximation of the pluricomplex Green function of the domain
with pole at the origin.
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r é s u m é

Nous montrons que tout domaine de Reinhardt borné et hyperconvexe est approché
extérieurement par des polyèdres polynomiaux spéciaux définis par des applications
polynomiales homogènes. Ceci se fait à l’aide d’une certaine approximation de la fonction
de Green pluricomplexe du domaine avec pôle à l’origine.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and statement of results

We consider here the following problem: Given a polynomially convex compact set K ⊂ C
n and its open neighborhood U , find

a polynomial mapping P = (P1, . . . , Pn) with P−1(0) ⊆ K and such that

K ⊂ {
z ∈ C

n:
∣∣Pk(z)

∣∣ < 1, 1 � k � n
}

� U .

When n = 1, its solution (D. Hilbert, 1897) is known as the Hilbert Lemniscate theorem; a proof can be found, e.g., in [6].
For n = 2, the problem was solved in [3] in the case of a circled set K (that is, ζ K ⊆ K for any ζ from the closed unit disk),
and the components of the mapping P can be chosen as homogeneous polynomials of equal degree with unique common
zero at the origin.

For arbitrary n � 2, it was shown in [4,5] that weaker approximations are possible. Namely, either the mapping P is
allowed to have a small part of its zero set outside K (for the general case of regular sets K ), or with the number of
components of the homogeneous mapping P increased to n + 1 (for the case of circled K ). Even the approximation of the
closed unit ball by the sublevel sets of n homogeneous polynomials with P−1(0) = {0} was stated in [5] as an open problem.

In this note, we solve the approximation problem by n homogeneous polynomials for any multicircled (Reinhardt) poly-
nomially convex compact set K . For pluripotential theory on multicircled sets and functions, see, for example, [1,7–9].

The above results in [3–5] make use of approximation of the pluricomplex Green function for a compact set with pole
at infinity by logarithms of moduli of equidimensional polynomial mappings. Our approach is based on approximation of
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pluricomplex Green functions for bounded Reinhardt domains with pole at the origin. Note however that the Green function
with logarithmic pole at 0 for a circled domain D can be extended by homogeneity G(cz) = G(z)+ log |c| to the whole space,
and the extension coincides on C

n \ D with the Green function for D with pole at infinity.
The main result is as follows:

Theorem 1. Let G(z) be the pluricomplex Green function of a bounded, polynomially convex Reinhardt domain D ⊂ C
n, with pole

at 0. Then there exists a sequence of mappings P (s) : C
n → C

n whose components P (s)
k are homogeneous polynomials of the same

degree qs, with the only common zero at 0, such that the sequence of functions vs = q−1
s maxk log |P (s)

k | converges to G uniformly on

D \ {0}, and the functions v+
s = max{vs,0} converge to the Green function for D with pole at infinity, uniformly on C

n.

As a consequence, we get an approximation of polynomially convex Reinhardt domains by special polyhedra defined by
homogeneous polynomial mappings from C

n to C
n , which solves, in particular, the problem posed in [5, pp. 366–367].

Corollary 2. For any bounded, polynomially convex Reinhardt domain D ⊂ C
n and every ε > 0, there exist n homogeneous polynomi-

als pk of the same degree, with the only common zero at 0, such that

D ⊂ {
z:

∣∣pk(z)
∣∣ < 1, 1 � k � n

} ⊂ (1 + ε)D. (1)

Finally, since any polynomially convex multicircled compact set is the intersection of domains satisfying the conditions
of Corollary 2, we deduce

Corollary 3. For any polynomially convex Reinhardt compact set K ⊂ C
n and every open neighborhood U of K , there exist n homoge-

neous polynomials pk of the same degree, with the only common zero at 0, such that K ⊂ {z ∈ C
n: |pk(z)| < 1, 1 � k � n} � U .

2. Notation and preliminary results

Let D be a bounded hyperconvex domain. By Ga,D we denote the pluricomplex Green function of D with pole at a ∈ D ,
that is, the upper envelope of negative plurisubharmonic functions u in D such that u(z) � log |z − a| + O (1) as z → a. The
function G is plurisubharmonic in D , continuous on D , maximal on D \ {a}, and G(z) = log |z − a| + O (1) near a.

From now on, we specify D to be a bounded, logarithmically convex and complete (which amounts to being polynomially
convex) Reinhardt (n-circled) domain in C

n , and denote G(z) = G0,D(z). Since the domain D is n-circled, so is the function G .
Given z ∈ C

n and θ ∈ R
n+ , denote S(θ, z) = ∑

k θk log |zk| and let h(θ) = sup{S(θ, z): z ∈ D} be the characteristic function
of the domain D (the support function of the logarithmic image log |D| of D).

Lemma 1. (Cf., e.g., [9, Proposition 1.4.3], [1, Lemma 4].) The Green function G of a bounded polynomially convex Reinhardt domain
D ⊂ C

n with pole at 0 has the representation

G(z) = sup
{

S(θ, z) − h(θ): θ ∈ Σ
}
, (2)

where Σ = {θ ∈ R
n+:

∑
k θk = 1}.

Proof. Denote the right hand side of (2) by R(z). As is easy to see, it is plurisubharmonic in D , equal to zero on ∂ D ,
equivalent to log |z| near 0, and, since R(cz) = R(z) + log |c|, it is maximal on D \ {0}, so R(z) ≡ G(z) by the Green function
uniqueness property. �
Lemma 2. For any ε > 0 and t < 0, there exist finitely many monomials g1, . . . , gm of the same degree q, such that

|G − v| < ε on Dt,0 = {
z: t � G(z) � 0

}
, (3)

where

v(z) = q−1 max
{

log
∣∣g j(z)

∣∣: 1 � j � m
}
, (4)

and the maximum is attained for at most n values of the indices j at any point z on the level set

Γt(v) = {
z ∈ D: v(z) = t

}
.

Remark. Lemma 2 can be deduced from a similar result [9, Lemma 6] on relative extremal functions. Note that it was
claimed there that, moreover, the maximum is attained for at most n functions g j on a set corresponding in our case to
{−1 � v(z) � 0}. However the proof of the claim has a gap, and what is actually shown there is that the approximating
function possesses this property only on finitely many its level surfaces. That is why we just follow the relevant arguments
from the proof of [9, Lemma 6].
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Proof. Representation (2), continuity of G , and compactness of Dt,0 imply the existence of points θ( j) ∈ Σ , 1 � j � m, such
that |G − u| < ε/2 on Dt,0, where

u(z) = max
1� j�m

{
S
(
a( j), z

) − b( j)}, a( j) = θ( j), b( j) = h
(
θ( j)).

What we need to do is to approximate the function u by a similar one with rational coefficients ã( j) and to provide the
required condition about n values. Consider the space X ≈ R

nm−p × R
m of matrices M = (a jk;b j) ∈ R

nm × R
m such that

a jk = 0 if a( j)
k = 0 (p being the number of these equations). For any t < 0, there exists an algebraic set At ⊂ X such that

any system
∑

k

a jkxk = b j + t, j ∈ J , | J | > n,

has no solution for (A,b) ∈ X \ At . Therefore, one can replace the points (a( j),b( j)) by (ã( j), b̃( j)) ∈ X \ At with rational
ã( j) ∈ rΣ for some rational r close to 1, such that the function

v(z) = max
1� j�m

{
S
(
ã( j), z

) − b̃( j)}

satisfies (3) and the maximum is attained for at most n functions at any point of the set Γt(v).
Finally, by choosing N ∈ Z+ so that ã( j) = N−1k( j) , rN ∈ Z

n+ , and k( j) ∈ Z
n+ for all j, we get (4) with monomials

g j(z) = e−Nb̃( j)
zk( j)

of degree q = rN , which completes the proof. �
The next point is a construction of precisely n polynomials approximating G on Γt(v). To this end, we use a procedure

from [9, Lemma 2], see also [2, Theorem 1]. Let g1, . . . , gm be the monomials from Lemma 2. Given s ∈ Z+ , let g(s) be a
polynomial mapping with the components

g(s)
k =

( ∑
j1<···< jk

gs
j1

. . . gs
jk

)n!/k

, k = 1, . . . ,n. (5)

Lemma 3. (See [9, Lemma 2].) In the above notation, the sequence of functions

vs = (qsn!)−1 max
1�k�n

log
∣∣g(s)

k

∣∣ (6)

converges to v uniformly on the level set Γt(v).

3. Proofs

Proof of Theorem 1. From Lemmas 2 and 3, we derive

∣∣G(z) − vs(z)
∣∣ < ε, z ∈ Γ−1(v) = {

v(z) = −1
}
, s � s0(ε). (7)

As follows from Lemma 1, the Green function G satisfies G(cz) = G(z) + log |c| for all c ∈ C such that cz ∈ D . The
functions g(s)

k defined by (5) are homogeneous polynomials of degree qs = qsn! and thus the function vs defined by (6) has
the property vs(cz) = vs(z) + log |c| for all c ∈ C. The homogeneity of both G and vs extends (7) to C

n \ {0} and implies the
claimed convergence of the functions v+

s . �
Proof of Corollary 2. Take δ = 1

2 log(1 + ε). By Theorem 1, there exist n homogeneous polynomials Pk of degree q such that
|G(z) − q−1 maxk log |Pk(z)|| < δ for all z ∈ C

n , z �= 0. Then

{
z: |Pk|1/q < e−δ, 1 � k � n

} ⊂ D ⊂ {
z: |Pk|1/q < eδ, 1 � k � n

}
, (8)

which gives (1) with pk(z) = Pk(e−δz). �
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