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We make the asymptotic analysis of the unique symmetric stationary measure of a self-
stabilizing process in the small-noise limit. It has been proved in previous works that
this measure converges with a linear rate in the asynchronized case and in the strictly
synchronized case but it is slower in the intermediate case. The aim of this Note is to
zoom around this phase transition.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On procède à l’analyse asymptotique de l’unique mesure stationnaire symétrique pour
un processus auto-stabilisant à petit bruit. Il a été prouvé dans des travaux antécédents
que cette mesure converge avec un taux linéaire dans le cas asynchrone et dans le cas
strictement synchrone mais la convergence est moins rapide dans le cas intermédiaire. Le
but de cette Note est de zoomer autour de cette transition de phase.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We investigate the asymptotic behavior in the small-noise limit of the stationary measures of the following so-called
self-stabilizing process:{

Xt = X0 + √
εBt − ∫ t

0 V ′(Xs)ds − ∫ t
0 F ′ ∗ us(Xs)ds

us = L(Xs)
. (I)

Here, ∗ denotes the convolution. The motion of the process is generated by three forces. The first one is the derivative of
a potential V . The second influence is a Brownian motion (Bt)t∈R+ . The third term – the so-called self-stabilizing term –
represents the attraction between all the trajectories. We will assume that V and F are polynomial functions.

There is a unique strong solution for (I) if E[X8q2

0 ] < ∞ with 2q = max{deg(V );deg(F )}, see [2]. The existence and the
non-uniqueness of the stationary measures have been studied in [3,7]. In particular, under simple assumptions, if V and F
are even, there is at least one symmetric stationary measure uε . The convergence in long-time towards one of the stationary
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measure(s) has been proved in [6]. The asymptotic analysis of the measure(s) uε has been made in [4,5]. Especially, the
convergence has been the subject of [4] and the rate of convergence has been studied in [5].

Under the convexity of V ′′ , F and F ′′ and the non-convexity of V , if we consider uε (whose limit is u0), according to
Theorem 1.2, Theorem 1.3 and Theorem 1.4 in [5], we obtain: for any f ∈ C 4(R,R) with polynomial growth,

lim
ε→0

log |〈 f , uε〉 − 〈 f , u0〉|
logε

= Λ(α) :=
{

1 if α 
= θ

1/m0 if α = θ
, (II)

where m0 := min{k � 2 | V (2k)(0) + F (2k)(0) > 0 or F (2k)(0) > 0}, α := F ′′(0) and θ := −V ′′(0).
This points out a discontinuity around the phase transition α = θ between the asynchronization (V ′′(0)+ F ′′(0) < 0) and

the synchronization (V ′′(0) + F ′′(0) � 0). The term “synchronization” means that the interaction is so strong that all the
stationary measures are pure states (Dirac measures) in the small-noise limit.

The aim of this Note is to prove that we can observe intermediate rates of convergence around the condition α = θ

provided that the potential function F depends on the small parameter ε . This is based on a particular example, nevertheless
extensions to general situations can easily be proved.

In order to produce intermediate rates, we construct some particular model. First we choose the reference environment
(resp. interaction) function V (x) := x4

4 − x2

2 (resp. F (x) := x4

4 + x2

2 ). Obviously θ = α = 1. The example is based on a small
perturbation of this reference: we consider the association between V and one of the following interaction potentials

F +
ρ (x) := x4

4
+ (1 + ρεη)x2

2
or F −

ρ (x) := x4

4
+ (1 − ρεη)x2

2
,

with ρ > 0. In other words, Eq. (I) in [5] leads to the study of symmetric invariant measures of the following self-stabilizing
process:

dXt = √
ε dBt − {

2X3
t + (

3E
[

X2
t

] ± ρεη
)

Xt
}

dt. (III)

We remove the odd moments appearing in the equation since we focus our attention to symmetric laws.
We will see that, in this new timescale, the function Λ is continuous in the right part of the diopter.
The Note is organized as follows. After presenting and justifying succinctly the general results (existence of a solution,

existence of a unique symmetric stationary measure uε and the convergence towards δ0 with ε → 0), we will give the value
of limε→0 log m2(ε)/ logε – where m2(ε) is the second moment of uε – by using some integrals which already appeared
in [1]. Then, the prefactor will be provided.

2. Preliminaries

There exists a unique strong solution for (III) (see [2]) and a unique symmetric invariant measure (see Section 4.2 in
[3]) denoted by u±

ε because we do not use ε in these proofs. We define m±
2 (ε) := ∫

R
x2u±

ε (x)dx. By Section 4.2 in [3], the
second moment m±

2 (ε) satisfies

m±
2 (ε) =

∫
R+ x2 exp[− 1

ε ((3m±
2 (ε) ± ρεη)x2 + x4)]dx∫

R+ exp[− 1
ε ((3m±

2 (ε) ± ρεη)x2 + x4)]dx
. (IV)

Proposition 1. For all η > 0 and ρ > 0, the sequence of symmetric invariant measures (u±
ε , ε > 0) converges weakly towards δ0 .

Proof. Let us assume the existence of a positive constant C and a decreasing sequence (εk)k∈N converging towards 0 such
that m±

2 (εk) > C for all k ∈ N (for notational simplicity, we shall drop the index k). We apply the following change of
variable x := √

ε y to (IV) and obtain m±
2 (ε) = εξ(m±

2 (ε) ± ρεη/3, ε) where

ξ(u, v) :=
∫

R+

y2νu,v(y)dy and νu,v(y) := exp[−3uy2 − v y4]∫
R

exp[−3uz2 − vz4]dz
. (V)

Let u ∈ R, v > 0. By Jensen’s inequality, ∂ξ
∂u (u, v) < 0 and ∂ξ

∂v (u, v) < 0. Since 3m2(ε) ± ρεη > C , for ε small enough, we
deduce that m±

2 (ε) � ε ξ(C/3,0). The r.h.s tends towards 0 when ε goes to 0 which is a nonsense because m±
2 (ε) > C . �

3. Main results

We shall just estimate the convergence of m±
2 (ε) as ε → 0 since 〈 f , u±

ε 〉 − 〈 f , u±
0 〉 is directly linked to m±

2 (ε). Indeed:
〈 f ; u±

ε 〉 − 〈 f ; u±〉 = f ′′(0)m±(ε) + O {m±(ε)}. And, m±(ε) = o{m±(ε)} since u±
ε converges towards δ0.
0 2 4 4 2
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Fig. 1. Description of m−
2 .

Proposition 2. Let η > 0 and ρ > 0. Then limε→0
logm+

2 (ε)

logε = Λ+(η) := 1 − min{η; 1
2 }.

Proof. Let us recall that m+
2 (ε) = εξ(m+

2 (ε) + ρεη/3, ε) where ξ is defined by (V). According to the proof of Proposition 1,
the function ξ is decreasing with respect to both variables. Therefore we can compute some upper-bound of m+

2 (ε) just by
noting that m+

2 (ε) + ρεη/3 � max{m+
2 (ε); ρεη/3}.

• The first inequality leads to m+
2 (ε) � εξ(m+

2 (ε),0). The r.h.s can be computed by some change of variable: there exists
some constant c0 > 0 such that m+

2 (ε) � c0
√

ε .
• The second inequality implies m+

2 (ε) � εξ(ρεη/3,0). The same argument permits to obtain the existence of c1 > 0 such
that m+

2 (ε) � c1ε
1−η .

Hence, for ε small enough, we deduce the higher-bound m+
2 (ε) � max{c1, c2}εΛ+(η) .

Let us now prove the lower-bound. By using the higher-bound, for ε small enough, there exists c3 > 0 such that
m+

2 (ε) + ρεη/3 � c3ε
min{η,1/2} . Since ξ is decreasing, we obtain: m+

2 (ε) � εξ(c3ε
min{η,1/2}, εmin{2η,1}). By a classical change

of variable, it yields immediately m+
2 (ε) � c4ε

Λ+(η) with c4 > 0. �
The same kind of convergence rate can be analyzed for m−

2 (ε). The proof is quite similar to the one of Proposition 2 so
we do not write the details.

Proposition 3. Let η > 0 and ρ > 0. Then limε→0
logm−

2 (ε)

logε = Λ−(η) = min{η; 1
2 }.

We apply the change of variable x := ε1/4 y in (IV) if η � 1
2 . If η � 1

2 , we proceed a reductio ad absurdum and we apply

the change of variable x := ε
η
2 y in (IV).

Proposition 2 and Proposition 3 point out that the behavior of m±
2 (ε) is not symmetric with respect to the critical

threshold α = θ . Some heuristic argument which could explain this difference is based on the limit measure. We know that
the measure considered when α � θ is the trivial measure δ0 whereas the support of the limit measure for α < θ contains
two points: u−

ε is then farther from δ0.
We can precise the asymptotic behavior of m±

2 (ε). The proof is left to the attention of the reader since the method is
the same than the ones used in Proposition 2 and in Proposition 3.

Corollary 4. Let η > 0 and ρ > 0. Then

lim
ε→0

m+
2 (ε)

εΛ+(η)
= λ+(η) :=

⎧⎪⎨
⎪⎩

(2ρ)−1 if 2η < 1

xρ if 2η = 1

x0 if 2η > 1

and lim
ε→0

m−
2 (ε)

εΛ−(η)
= λ−(η) :=

⎧⎪⎨
⎪⎩

ρ/5 if 2η < 1

x−ρ if 2η = 1

x0 if 2η > 1

.

Here, for all r ∈ R, xr is the unique solution of xr = ξ(xr + r/3,1), see (V) for the definition of ξ .
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Fig. 2. Description of m+
2 .

By taking ε := 10−10, let us simulate ξ±(η) := {log(m±
2 (ε)) − log(λ±)}/ logε with respect to η (see Figs. 1 and 2). The

continuous lines represent Λ±(η). The discontinuity appearing in the simulation is due to the prefactors in the asymptotic
estimates.
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