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In this Note, we introduce the category of Lie n-racks and generalize several results known
on racks. In particular, we show that the tangent space of a Lie n-rack at the neutral
element has a Leibniz n-algebra structure.
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r é s u m é

Dans cette Note, nous introduisons la catégorie des n-casiers de Lie et nous généralisons
plusieurs résultats connus pour les racks. En particulier, nous montrons que l’espace
tangent d’un n-casier de Lie en l’élément neutre a une structure de n-algèbre de Leibniz.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and generalities

One of the most important problems in Leibniz algebra theory is the coquecigrue problem (a generalization of Lie’s
third theorem to Leibniz algebras) which consists of finding a generalization of groups whose tangent algebra structure
corresponds to a Leibniz algebra. Loday dubbed these objects “coquecigrues” [7] as no properties were foreseen on them.
While attempting to solve this problem, Kinyon [5] showed that the tangent space at the neutral element of a Lie rack has
a Leibniz algebra structure.

Meanwhile, Grabowski and Marmo [3] provided in the same order of idea an important connection between Filippov
algebras and Nambu–Lie groups. All these ideas suggest a new mathematical structure by extending the binary operation of
Lie racks to an n-ary operation. This yields the introduction of Lie n-racks and generalizes Lie racks from the case n = 2. It
turns out that one can extend Kinyon’s result to Leibniz n-algebras via Lie n-racks.

Let us recall a few definitions. Given a field K of characteristic different to 2, a Leibniz n-algebra [2] is defined as a
K-vector space g equipped with an n-linear operation [−, . . . ,−] : g⊗n → g satisfying the identity

[
x1, . . . , xn−1, [y1, y2, . . . , yn]

] =
n∑

i=1

[
y1, . . . , yi−1, [x1, . . . , xn−1, yi], yi+1, . . . , yn

]
. (1)

When the n-ary operation [−, . . . ,−] is antisymmetric in each pair of variables, i.e., [x1, x2, . . . , x, . . . , x, . . . , xn] = 0 for all
x ∈ G, the Leibniz n-algebra becomes a Filippov algebra (more precisely an n-Filippov algebra). Also, a Leibniz 2-algebra is
exactly a Leibniz algebra [6, p. 326] and becomes a Lie algebra if the binary operation [ , ] is skew symmetric. If g is a vector

E-mail address: guy.biyogmam@swosu.edu.
1631-073X/$ – see front matter © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.crma.2011.07.019

http://dx.doi.org/10.1016/j.crma.2011.07.019
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:guy.biyogmam@swosu.edu
http://dx.doi.org/10.1016/j.crma.2011.07.019


958 G.R. Biyogmam / C. R. Acad. Sci. Paris, Ser. I 349 (2011) 957–960
space endowed with an n-linear operation σ : g × g × · · · × g → g, then a map D : g → g is called a derivation with respect
to σ if

D
(
σ(x1, . . . , xn)

) =
n∑

i=1

σ
(
x1, . . . , D(xi), . . . , xn

)
.

A lie rack (R,◦,1) is a smooth manifold R with a binary operation ◦ and a specific element 1 ∈ R such that the following
conditions are satisfied:

– x ◦ (y ◦ z) = (x ◦ y) ◦ (x ◦ z);
– for each x, y ∈ R , there exits a unique a ∈ R such that x ◦ a = y;
– 1 ◦ x = x and x ◦ 1 = 1 for all x ∈ R;
– the operation ◦ : R × R → R is a smooth mapping.

2. n-Racks

Definition 2.1. A left n-rack1 (right n-racks are defined similarly) (R, [−, . . . ,−]R) is a set R endowed with an n-ary opera-
tion [−, . . . ,−]R : R × R × · · · × R → R such that

(i) [x1, . . . , xn−1, [y1, . . . , yn−1]R ]R = [[x1, . . . , xn−1, y1]R , . . . , [x1, . . . , xn−1, yn]R ]R . (This is the left distributive property of
n-racks);

(ii) For a1, . . . ,an−1,b ∈ R, there exists a unique x ∈ R such that [a1, . . . ,an−1, x]R = b.

If in addition there is a distinguish element 1 ∈ R , such that

(iii) [1, . . . ,1, y]R = y and [x1, . . . , xn−1,1]R = 1 for all x1, . . . , xn−1 ∈ R, then (R, [−, . . . ,−]R ,1) is said to be a pointed
n-rack. An n-rack is a weak n-quandle if it further satisfies

[x, x, . . . , x, x]R = x for all x ∈ R.

An n-rack is an n-quandle if it further satisfies

[x1, x2, . . . , xn−1, y]R = y if xi = y for some i ∈ {1,2, . . . ,n − 1}.
An n-quandle (resp. weak n-quandle) is an n-kei (resp. weak n-kei) if it further satisfies[

x1, . . . , xn−1, [x1, . . . , xn−1, y]] = y for all x1, . . . , xn−1, y ∈ R.

For n = 2, one recovers racks, quandles [4] and keis [8]. Note also that n-quandles are also weak n-quandles, but the
converse is not true for n > 2; see Example 2.3.

Definition 2.2. Let R, R ′ be n-racks. A function α : R → R ′ is said to be a homomorphism of n-racks if

α
([x1, . . . , xn]R

) = [
α(x1),α(x2), . . . ,α(xn)

]
R ′ for all x1, x2, . . . , xn ∈ R.

We may thus form the category n pRACK of pointed n-racks and pointed n-rack homomorphisms.

Example 2.3. Let Γ := Z[t±1, s]/(s2 + ts − s). Any Γ -module M endowed with the operation [−, . . . ,−]M defined by
[x1, . . . , xn]M = sx1 + sx2 + · · · + sxn−1 + txn is an n-rack that generalizes the Alexander quandle when s = 1 − t. Indeed[[x1, . . . , xn−1, y1]M , . . . [x1 . . . , xn−1, yn]M

]
M

=
(

n−1∑
i=1

s(sx1 + sx2 + · · · + sxn−1 + tyi)

)
+ t(sx1 + sx2 + · · · + sxn−1 + tyn)

= (
s2 + st

)( n−1∑
i=1

xi

)
+ ts

(
n−1∑
i=1

yi

)
+ t2 yn = [

x1, . . . , xn−1, [y1, . . . , yn]M
]

M since s2 + st = s.

Therefore (i) is satisfied. One easily checks the axiom (ii). Note that for t = 1 and s = 2, we obtain an n-rack that is a weak
n-kei if n is odd.

1 2-racks coincide with Racks. They were introduced in 1959 by G. Wraith and J. Conway [1].
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Example 2.4. A group G endowed with the operation [−, . . . ,−]G defined by

[x1, . . . , xn]G = x1x2 · · · xn−1xnx−1
n−1x−1

n−2 · · · x−1
1 ,

is a pointed weak n-quandle (pointed by 1 ∈ G).

This determines a functor F : GROUP → n pRACK from the category of groups to the category of pointed n-racks. The
functor F is faithful and has a left adjoint F′ defined as follows: Given a pointed n-rack R, one constructs a group

G R = 〈R〉/I

where 〈R〉 stands for the free group on the elements of R and I is the normal subgroup generated by the set{(
x−1

1 x−1
2 · · · x−1

n−1x−1
n xn−1xn−2 · · · x1

)([x1, . . . , xn]R
)

with xi ∈ R, i = 1,2, . . . ,n
}
.

That F′ is left adjoint to F is a consequence of the following proposition which extends to n-racks a well-known result
on the category of racks:

Proposition 2.5. Let G be a group and let R be an n-rack. For a morphism of n-racks α : R → F(G), there is a unique morphism of
groups α∗ : F′(R) → G such that the following diagram commutes:

F′(R)
α∗

G

R
α

F(G)

id

Proof. By the universal property of free groups, there is a unique morphism of groups β : 〈R〉 → G such that α = β|R . In
particular, for all xi ∈ R, i = 1,2 . . . ,n,

β
((

x−1
1 x−1

2 · · · x−1
n−1x−1

n xn−1xn−2 · · · x1
)([x1, . . . , xn]R

))
= α

((
x−1

1 x−1
2 . . . x−1

n−1x−1
n xn−1xn−2 · · · x1

)([x1, . . . , xn]R
)) = 1.

The result follows by the universal property of quotient groups. �
Example 2.6. Any rack (R,◦,1) is also an n-rack under the n-ary operation defined by [x1, x2, . . . , xn]R = x1 ◦ (x2 ◦ (· · · (xn−1 ◦
xn) · · ·)). This process determines a functor G : pRACK → n pRACK , which has as left adjoint, the functor G′ : n pRACK →
pRACK defined as follows: Given a pointed n-rack (R, [− · · ·−],1), then R×(n−1) endowed with the binary operation

(x1, x2, . . . , xn−1) ◦ (y1, y2, . . . yn−1) = ([x1, . . . , xn−1, y1]R , . . . , [x1, . . . , xn−1, yn−1]R
)

is a rack pointed at (1,1, . . . ,1). Let us observe that if R is an n-quandle, then R×(n−1) is a quandle.

Definition 2.7. Let R be a pointed n-rack and let S R = { f : R → R, f is a bijection}. Then define φ : R × R ×
· · · × R → nAut(R) by φ(x1, . . . , xn−1)(y) = [x1, . . . , xn−1, y]R for all y ∈ R where nAut(R) = {ξ ∈ S R/ξ([x1, . . . , xn]R) =
[ξ(x1), . . . , ξ(xn)]R}. That φ is well-defined is a direct consequence of the axiom (ii) of Definition 2.1.

Proposition 2.8. Let (R, [−, . . . ,−]R ,1) be an n-rack, then for all x1, . . . , xn−1 ∈ R, φ(x1, . . . , xn−1) operates on R by n-rack auto-
morphism, i.e. φ(x1, . . . , xn−1) ∈ nAut(R).

Proof. A direct consequence of the axiom (i) of Definition 2.1. �
3. From Lie n-racks to Leibniz n-algebras

In this section we define the notion of Lie n-racks and provide a connection with Leibniz n-algebras. Throughout the
section, T1 denotes the tangent functor.

Definition 3.1. A Lie n-rack (R, [−, . . . ,−]R ,1) is a smooth manifold R with the structure of a pointed n-rack such that the
n-ary operation [−, . . . ,−]R : R × R × · · · × R → R is a smooth mapping. For n = 2, one recovers Lie racks [5].

Example 3.2. Let H be a Lie group. The operation [x1, . . . , xn]G = x1x2 · · · xn−1xnx−1
n−1x−1

n−2 · · · x−1
1 provides H with a Lie n-rack

structure.



960 G.R. Biyogmam / C. R. Acad. Sci. Paris, Ser. I 349 (2011) 957–960
Example 3.3. Let (H, {− · · ·−}) be a group endowed with an antisymmetric n-ary operation, and V an H-module. Define
the n-ary operation [−, . . . ,−]R on R := V × H by[

(u1, A1), (u2, A2) · · · (un, An)
]

R := ({A1, . . . , An}un, A1 A2 · · · An−1 An A−1
n−1 A−1

n−2 · · · A−1
1

)
.

Then (R, [− · · ·−]R , (0,1)) is a Lie n-rack.

Theorem 3.4. Let R be a Lie n-rack and g := T1 R. For all x1, x2, . . . , xn−1 ∈ R, the tangent mapping Φ(x1, x2, . . . , xn−1) =
T1(φ(x1, x2, . . . , xn−1)) is an automorphism of (g, [−, . . . ,−]g).

Proof. Since φ(x1, x2, . . . , xn−1)(1) = [x1, x2, . . . , xn−1,1]R = 1, we apply the tangent functor T1 to φ(x1, x2, . . . , xn−1) : R →
R and obtain Φ(x1, x2, . . . , xn−1) : T1 R → T1 R which is in GL(T1 R) as φ(x1, x2, . . . , xn−1) ∈ nAut(R) by Proposition 2.8. Now
by the left distributive property of n-racks, we have

φ(x1, x2, . . . , xn−1)
(
φ(y1, y2, . . . , yn−1)(yn)

)
= φ

(
φ(x1, . . . , xn−1)(y1),φ(x1, . . . , xn−1)(y2), . . . , φ(x1, . . . , xn−1)(yn−1)

)(
φ(x1, . . . , xn−1)(yn)

)
which successively differentiated at 1 ∈ R with respect to yn, then yn−1, until y1 yields to

Φ(x1, x2, . . . , xn−1)
([Y1, Y2, . . . , Yn]g

)
= [

Φ(x1, x2, . . . , xn−1)(Y1),Φ(x1, x2, . . . , xn−1)(Y2), . . . ,Φ(x1, x2, . . . , xn−1)(Yn)
]
g

(2)

for all Y1, Y2, . . . , Yn ∈ g. �
Theorem 3.5. Let R be a Lie n-rack and let x1, . . . , xn−1 ∈ R corresponding respectively to X1, . . . , Xn−1 ∈ g := T1 R. Then, the adjoint
derivation ad{X1, . . . , Xn−1} : g → gl(g) defined by

ad{X1, X2, . . . , Xn−1}(Y ) = [X1, X2, . . . , Xn−1, Y ]g
is exactly T1(Φ).

Proof. From the proof of Theorem 3.4, Φ(x1, x2, . . . , xn−1) ∈ GL(g). Also, the mapping Φ : R × R × · · · × R → GL(g) satisfies
Φ(1,1, . . . ,1) = I, where I ∈ GL(g) is the identity. Differentiating Φ at (1,1, . . . ,1) yields a mapping T1(Φ) : T1(R × R ×
· · · × R) → gl(g), where gl(g) is the Lie algebra associated to the Lie group GL(g). Also differentiating the identity (2) at
(1,1, . . . ,1) with respect to (x1, x2, . . . , xn−1) yields

[
X1, . . . , Xn−1, [Y1, Y2, . . . , Yn]g

]
g

=
n∑

i=1

[
Y1, . . . , Yi−1, [X1, . . . , Xn−1, Yi]g, Yi+1, . . . , Yn

]
g
. �

Corollary 3.6. Let R be a Lie n-rack and g := T1 R. Then there exists an n-linear mapping [−, . . . ,−]g : g × g × · · · × g → g such that
(g, [−, . . . ,−]g) is a Leibniz n-algebra.

Proof. From the proofs of Theorems 3.4 and 3.5, it is clear that the n-ary operation [−, . . . ,−]g is a derivation for itself. �
References

[1] J. Conway, G. Wraith, Unpublished correspondence, 1958.
[2] J.M. Casas, J.L. Loday, T. Pirashvili, Leibniz n-algebras, Forum Math. 14 (2002) 189–207.
[3] J. Grabowski, G. Marmo, On Filippov algebroids and multiplicative Nambu–Poisson structures, Differential Geom. Appl. 12 (2000) 35–50.
[4] D. Joyce, A classifying invariant of knots: the knot quandle, J. Pure Appl. Algebra 23 (1982) 37–65.
[5] K. Kinyon, Leibniz algebra, Lie racks and digroups, J. Lie Theory 17 (2007) 99–111.
[6] J.-L. Loday, Cyclic Homology, Springer-Verlag, Berlin, Heidelberg, New York, 1992.
[7] J.-L. Loday, Une Version Non Commutative des Algebres de Lie : Les Algebres de Leibniz, Enseign. Math. 39 (1993) 269–293.
[8] M. Takasaki, Abstraction of symmetric transformation, Tohoku Math. J. 49 (1942/1943).


	Lie n-racks
	1 Introduction and generalities
	2 n-Racks
	3 From Lie n-racks to Leibniz n-algebras
	References


