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To find the optimal value of window length in singular spectrum analysis (SSA), we
consider the concept of separability between the signal and noise component. The
theoretical results confirm that for a wide class of time series, the suitable value of this
parameter is median{1, . . . , T } with the series of length T . The theoretical results obtained
here coincide with those obtained previously from the empirical point of view.
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r é s u m é

Pour déterminer la valeur optimale de la longueur de fenêtre dans l’analyse d’un spectre
singulier (SSA) on utilise le concept de séparabilité entre le signal et la composante
du bruit. Les résultats théoriques confirment, que pour une classe importante de séries
temporelles, la valeur la mieux adaptée de ce paramètre est la médiane de {1, . . . , N} pour
des séries de longueur N . Les résultats théoriques obtenus dans cette Note coïncident avec
ceux qui sont utilisés à partir de méthodes empiriques.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Singular Spectrum Analysis (SSA) is a relatively novel but powerful technique in time series analysis that has been
developed and applied to many practical problems (see, for example, [1–5] and references therein).

The whole procedure of the SSA technique depends upon two basic, but very important, parameters i) the window
length L and ii) the number of eigenvalues r, that one needs to select for reconstructing noise free series from a noisy
series of length T . Certainly, the choice of parameter L depends on the data we have and the analysis we aim to perform.
The improper choice of L would imply an inferior decomposition.

Elsner and Tsonis [6] give some discussion and remark that choosing L = T /4 is a common practice. It has been recom-
mended that L should be large enough but not larger than T /2 [1]. Large values of L allow longer period oscillations to
be resolved, but choosing L too large leaves too few observations from which to estimate the covariance matrix of the L
variables. Although considerable attempt and various techniques have been considered for selecting the optimal value of L,
there is inadequate theoretical justification for choosing L. In order to find the optimal value of L we investigate the concept
of separability, which is the main methodological concept in SSA.
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Throughout the Note, we consider a time series Y T = ST +εT of length T , where ST is the component of interest (usually
called signal) and εT is the noise component (can be a random noise or a deterministic component). The aim of the SSA
reconstruction stage is to find an estimate for the signal components ST , Ŝ T . In the ideal situation we completely remove
the noise component εT ; i.e., ST = Ŝ T . However, in the real situation we cannot reconstruct ST completely, but we try to
find Ŝ T close to ST with respect to different criteria.

2. Theoretical results

2.1. Singular spectrum analysis: SSA

A short description of the SSA technique is given below (for more information see [1]).

Stage I. Decomposition
Step I: Embedding. Embedding can be considered as a mapping that transfers a one-dimensional time series Y T =

(y1, . . . , yT ) into the multi-dimensional series X1, . . . , XK with vectors Xi = (yi, . . . , yi+L−1)
T ∈ RL , where L (2 � L � T −1)

is the window length and K = T − L + 1. The result of this step is the trajectory matrix

X = [X1, . . . , XK ] = (xij)
L,K
i, j=1. (1)

Note that the trajectory matrix X is a Hankel matrix, which means that all the elements along the second diagonal i + j =
const are equal.

Step II: Singular Value Decomposition, SVD. In this step we perform the SVD of X. Denote by λ1, . . . , λL the eigenvalues
of XXT arranged in the decreasing order (λ1 � · · · � λL � 0) and by U1, . . . , U L the corresponding eigenvectors. The SVD of
X can be written as X = X1 + · · · + XL, where Xi = √

λi U i V i
T and V i = XT Ui/

√
λi (if λi = 0 we set Xi = 0).

Stage II. Reconstruction
Step I: Grouping. The grouping step corresponds to splitting the elementary matrices into several groups and summing

the matrices within each group. Let I = {i1, . . . , ip} (p < L) be a group of indices i1, . . . , ip . Then the matrix XI corresponding
to the group I is defined as XI = Xi1 + · · · + Xip . The split of the set of indices {1, . . . , L} into disjoint subsets I1, . . . , Im

corresponds to the representation X = XI1 + · · · + XIm . In our case, we have only two groups; m = 2. I1 and I2 are related
to the noise and signal components, respectively.

Step II: Diagonal averaging. The purpose of diagonal averaging is to transform a matrix to the form of a Hankel matrix,
which can be subsequently converted to a time series.

2.2. Properties of Hankel matrix

Let us now consider the properties of Hankel matrix as the second step of both stages of the SSA algorithm are based
on the properties of the Hankel matrix X.

Theorem 2.1. Let B denote the Hankelized form of the arbitrary L × K matrix A. Then: T L
A−B = T L

A − T L
B where, T L

A = tr(AAT ).

Proof. It is sufficient to show that tr(ABT ) = tr(BBT ).

tr
(
ABT ) =

T +1∑
s=1

s2∑
l=s1

al,s−lbl,s−l =
T +1∑
s=1

s2∑
l=s1

al,s−lās =
T +1∑
s=1

w L
s−1ā2

s = tr
(
BBT )

where, s1 = max{1, s − T + L}, s2 = min{L, s} and w L
s = min{s, L, T − s + 1}. �

Corollary 2.1.1. Let A be an arbitrary L × K matrix and B be its corresponding Hankelized form. Then:

tr
(
AAT )

� tr
(
BBT )

. (2)

Corollary 2.1.2. Matrix B is the nearest matrix to A among all Hankel matrices of dimension L × K with respect to T L
A .

2.3. Separability

The main concept in studying SSA properties is ‘separability’, which characterizes how well different components can be
separated from each other. The following quantity (called the weighted correlation or w-correlation) is a natural measure of
similarity between two series Y (1) and Y (2) [1]:
T T
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ρ
(w)
12 = (Y (1)

T , Y (2)
T )w

‖Y (1)
T ‖w‖Y (2)

T ‖w

where ‖Y (i)
T ‖w =

√
(Y (i)

T , Y (i)
T )w , (Y (i)

T , Y ( j)
T )w = ∑T

p=1 w L
p y(i)

p y( j)
p (i, j = 1,2), w L

p = min{p, L, T − p + 1}.
If the absolute value of the w-correlations is small, then the corresponding series are almost w-orthogonal, but, if it

is large, then the two series are far from being w-orthogonal and are therefore weakly separable. Assume we only have
two components signal and noise. Therefore, the value of w-correlations shows that how the reconstructed signal has been
separated from the noise component. In the following we will show that the minimum value of w-correlations is obtained
at L = [ T +1

2 ].

Theorem 2.2. Let S̃r
L be the reconstructed series based on the first r singular values of the trajectory matrix X. Then:

1. S̃r
L = S̃r

K ,

2. Ñr
L = Ñr

K , where Ñr
L = Y T − S̃r

L .

Proof. Below, we only provide the proof for the first equality. The second equality is easily obtained by the first equality.
Recall that S̃r

L and S̃r
K are constructed by diagonal averaging of the matrices Xr

L and Xr
K , respectively, where:

Xr
L =

r∑
i=1

√
λi U i V T

i , Xr
K =

r∑
i=1

√
λi V i U

T
i .

Thus, the results can be obtained by equality Xr
L = (Xr

K )T . The vectors Ñr
L and Ñr

K are usually called noise vector. The
separability between Ñr

L and S̃r
L (or between Ñr

K and S̃r
K ) is a very important issue for i) reconstruction stage, and ii) for

forecasting procedure. �
Corollary 2.2.1. Let ρw

L,r denote the w-correlation between S̃r
L and Ñr

L . Then ρw
L,r = ρw

K ,r . This confirms that we only need to consider

L ∈ {2, . . . , [ T +1
2 ]}.

Theorem 2.3. Let X be the trajectory matrix defined as (1) and X = S+N = S̃+Ñ where, S = ∑r
i=1

√
λi U i V T

i , N = ∑L
j=r+1

√
λ j U j V T

j ,

and matrices S̃ and Ñ are Hankelized matrices of S and N, respectively. Then T L
S̃ Ñ

= tr( S̃ ÑT ) > 0.

Proof. The above definition of matrices S and N, and also using the orthogonality feature of eigenvectors confirm that
tr(SNT ) = 0. Moreover, the equality

tr
(
(S + N)(S + N)T ) = tr

(
(̃S + Ñ)(̃S + Ñ)T )

follows that:

tr
(

S̃ ÑT ) = [tr(SST ) − tr(̃S S̃T )] + [tr(NNT ) − tr(ÑÑT )]
2

. (3)

Applying Corollary 2.1.1 confirms that the right-hand side of Eq. (3) is non-negative which completes the proof. �
Notation: The superscript on matrices in the subsequent theorems stands for the number of rows of them.

Theorem 2.4. T L
S̃L is an increasing function of L on L ∈ {2, . . . , [ T +1

2 ]}, provided that there exists a Hankel matrix C of dimension L × K
such that:

T L
SL−C � T L

SL − T L−m
S̃L−m (4)

where m ∈ {1, . . . , L − 2}. Therefore, the maximum values of these functions are attained at L = [ T +1
2 ].

Proof. Below, we only consider the proof for T L
S̃L . Similar discussion and proof can be obtained for T L

ÑL . Recall from Theo-
rem 2.1 and Corollary 2.1.2 that for every Hankel matrix C of dimension L × K :

T L
SL − T L

S̃L = T L
SL−̃SL � T L

SL−C. (5)

Now, assume C is a Hankel matrix that satisfies Eq. (4). The proof is then completed using Eqs. (4) and (5). �
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Theorem 2.5. T L
SL−̃SL is a decreasing function of L on L ∈ {2, . . . , [ T +1

2 ]}, provided that there exists a Hankel matrix C of dimension

L × K such that:

T L
SL−C � T L−m

SL−m − T L−m
S̃L−m (6)

where m ∈ {1, . . . , L − 2}. Therefore, the minimum value of this function is attained at L = [ T +1
2 ].

Proof. To proof this, we can employ the similar approach used in Theorem 2.4. �
Corollary 2.5.1. The minimum value of w-correlation attains at L = [ T +1

2 ], provided that length of series is large enough and there
exists a Hankel matrix C of dimension L × K such that inequality (6) is fulfilled.

Proof. To proof this assertion, it is enough to show that T L
SL is an increasing function of L. For a large value of T , we have:

T L
SL =

r∑
j=1

λ
(L,T )
j �

r∑
j=1

λ
(L−1,T −1)
j ≈ T L−1

SL−1 . (7)

Moreover, note that every Hankel matrix C of dimension L × K that satisfies inequality (6) also satisfies inequality (4). This
completes the proof. �

Corollary 2.5.1 indicates that the reconstructed signal and noise using the first r eigen triples are almost w-orthogonal,
if we choose L = [ T +1

2 ]. Finding a Hankel matrix C that satisfies inequality (6) is not easy. However, we can find some
equivalent conditions.

Theorem 2.6. Let σ 2
l (SL) is the lth secondary diagonal variance of the matrix SL . If σ 2

l (SL) � σ 2
l (SL−m), then Theorem 2.5 is satisfied

and inequality (6) has infinite solutions with respect to C.

Proof. The first part of theorem is satisfied by using Theorems 2.1.1 and 2.1. For the second part, using inequality (6) we
have:

T +1∑
j=2

s2∑
i=s1

(
sL

i, j−i − c j−1
)2 �

T +1∑
j=2

s2∑
i=s1

(
sL−m

i, j−i − s̄L−m
j−1

)2 =
T +1∑
j=2

σ 2
j−1

(
SL−m)

. (8)

Now note that if the following inequality satisfies for j = 2, . . . , T + 1:

s2∑
i=s1

(
sL

i, j−i − c j−1
)2 − σ 2

j−1

(
SL−m)

� 0, (9)

then inequality (8) is fulfilled. But, the left-hand side of the inequality (9) is a quadratic form of c j−1 and has the following
discriminant:

� j−1 = σ 2
j−1(SL−m) − σ 2

j−1(SL)

w L
j−1

� 0. (10)

Therefore, we can find infinite real c j−1 that is satisfied inequality (9) that completes the proof. �
Remark 1. Theorem 2.6 provides a sufficient condition as we know by Corollaries 2.1.1 and 2.1 that T L

SL−̃SL � T L−m
SL−m−̃SL−m is

equivalent to
∑T +1

j=2 σ 2
j−1(SL) �

∑T +1
j=2 σ 2

j−1(SL−m).
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