Partial Differential Equations

Internal rectification for elastic surface waves

Rectification interne d’ondes de surface élastiques

Alice Marcou
Université de Bordeaux, IMB, 33405 Talence cedex, France

Article info
Article history:
Received 11 May 2011
Accepted after revision 7 July 2011
Available online 9 November 2011
Presented by Gérard Iooss

Abstract
We prove that fast oscillatory elastic surface waves can produce nontrivial internal nonoscillatory displacements.

We consider elastic surface waves of the form, in $y > 0$:

$$U^\varepsilon(t, x, y) \sim \sum_{k=2}^{\infty} \varepsilon^k U_k \left(t, x, y, \frac{x-ct}{\varepsilon}, \frac{y}{\varepsilon} \right),$$

with profiles $U_k(t, x, y, Y, \theta) = U_k(t, x, y) + U_k^*(t, x, \theta, Y)$, where U_k^* is periodic in θ and exponentially decaying to 0 in Y.

We prove that, in general, the corrector U_3 is not purely localized near the boundary, that is U_3 does not vanish. U_3 depends on the slow variable y and does not decay to 0 when Y tends to $+\infty$, even if the source terms are exponentially decaying to 0.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé
On prouve que des ondes de surface élastiques rapidement oscillantes peuvent produire un déplacement interne non oscillant non trivial.

On considère des ondes de surface élastiques de la forme, sur $y > 0$:

$$U^\varepsilon(t, x, y) \sim \sum_{k=2}^{\infty} \varepsilon^k U_k \left(t, x, y, \frac{x-ct}{\varepsilon}, \frac{y}{\varepsilon} \right),$$

avec des profils $U_k(t, x, y, Y, \theta) = U_k(t, x, y) + U_k^*(t, x, \theta, Y)$, où U_k^* est périodique en θ et exponentiellement décroissant vers 0 en Y.

On prouve que, en général, le correcteur U_3 n’est pas purement localisé près de la frontière, c’est-à-dire U_3 n’est pas nul. U_3 dépend de la variable lente y et ne décroît pas vers 0 lorsque Y tend vers $+\infty$, même si les termes source sont exponentiellement décroissants vers 0.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

E-mail address: alice.marcou@math.u-bordeaux1.fr.
Version française abrégée

On prouve que des ondes de surface élastiques rapidement oscillantes peuvent produire un déplacement interne non oscillant non trivial. Ce phénomène a été observé et expliqué dans [4] pour des systèmes du premier ordre généraux ; on s’intéresse ici au cas des ondes élastiques.

On considère le problème aux limites (1)–(2) et une fréquence (−c, 1) telle qu’il existe des ondes de surface oscillantes, c’est-à-dire des solutions du problème aux limites localisées près de la frontière et telles que la trace sur la frontière a des oscillations rapides en la phase θ = k/ct. On prouve ici que, en général, le correcteur

\[U \]

est purement localisé près de la frontière, ce qui est le cas de l’élastique.

On cherche des ondes de surface qui admettent un développement asymptotique de la forme (3). On cherche des solutions du problème aux limites localisées près de la frontière et telles que la trace sur la frontière a des oscillations rapides en la phase θ = k/ct. On prouve ici que, en général, le correcteur \(U \) n’est pas purement localisé près de la frontière.

\(U \) est solution des équations linéarisées de l’élasticité (5)–(6), avec des termes au bord déterminés par \(\alpha \) et non nuls en général. \(U \) dépend de la variable lente \(Y \) et ne décroît pas vers 0 lorsque \(Y \) tend vers +∞, même si le terme source est exponentiellement décroissant vers 0.

1. Introduction

Nous prouvons que des ondes de surface élastiques rapidement oscillantes peuvent produire un déplacement interne non oscillant non trivial. Ce phénomène a été observé et expliqué dans [4] pour des systèmes du premier ordre généraux ; on s’intéresse ici au cas de l’élastique.

On considère le problème aux limites (1)–(2) et une fréquence (−c, 1) telle qu’il existe des ondes de surface oscillantes, c’est-à-dire des solutions du problème aux limites localisées près de la frontière et telles que la trace sur la frontière a des oscillations rapides en la phase θ = k/ct. On prouve ici que, en général, le correcteur \(U \) n’est pas purement localisé près de la frontière.

\(U \) est solution des équations linéarisées de l’élasticité (5)–(6), avec des termes au bord déterminés par \(\alpha \) et non nuls en général. \(U \) dépend de la variable lente \(Y \) et ne décroît pas vers 0 lorsque \(Y \) tend vers +∞, même si le terme source est exponentiellement décroissant vers 0.

1. Introduction

Nous prouvons que des ondes de surface élastiques rapidement oscillantes peuvent produire un déplacement interne non oscillant non trivial. Ce phénomène a été observé et expliqué dans [4] pour des systèmes du premier ordre généraux ; on s’intéresse ici au cas de l’élastique.

On considère le problème aux limites (1)–(2) et une fréquence (−c, 1) telle qu’il existe des ondes de surface oscillantes, c’est-à-dire des solutions du problème aux limites localisées près de la frontière et telles que la trace sur la frontière a des oscillations rapides en la phase θ = k/ct. On prouve ici que, en général, le correcteur \(U \) n’est pas purement localisé près de la frontière.

\(U \) est solution des équations linéarisées de l’élasticité (5)–(6), avec des termes au bord déterminés par \(\alpha \) et non nuls en général. \(U \) dépend de la variable lente \(Y \) et ne décroît pas vers 0 lorsque \(Y \) tend vers +∞, même si le terme source est exponentiellement décroissant vers 0.

1. Introduction

Nous prouvons que des ondes de surface élastiques rapidement oscillantes peuvent produire un déplacement interne non oscillant non trivial. Ce phénomène a été observé et expliqué dans [4] pour des systèmes du premier ordre généraux ; on s’intéresse ici au cas de l’élastique.

On considère le problème aux limites (1)–(2) et une fréquence (−c, 1) telle qu’il existe des ondes de surface oscillantes, c’est-à-dire des solutions du problème aux limites localisées près de la frontière et telles que la trace sur la frontière a des oscillations rapides en la phase θ = k/ct. On prouve ici que, en général, le correcteur \(U \) n’est pas purement localisé près de la frontière.

\(U \) est solution des équations linéarisées de l’élasticité (5)–(6), avec des termes au bord déterminés par \(\alpha \) et non nuls en général. \(U \) dépend de la variable lente \(Y \) et ne décroît pas vers 0 lorsque \(Y \) tend vers +∞, même si le terme source est exponentiellement décroissant vers 0.
2. Statement of the main results

2.1. Statement of the problem

Surface waves are real solutions $U^ε(t, x, y) = \left(\frac{u^ε(t, x, y)}{v^ε(t, x, y)}\right)$ satisfying (1) in $y > 0$ and (2) on $y = 0$, that admit asymptotic expansions

$$U(t, x, y) \sim \sum_{k=2}^{\infty} \varepsilon^k U_k \left(t, x, y - \frac{ct}{\varepsilon}, \frac{y}{\varepsilon}\right),$$

with profiles $U_k(t, x, y, \theta, Y) = U^k(t, x, y) + U^k_*(t, x, \theta, Y)$ belonging to the space $S = S \oplus S^*$ defined in [4], that is U^k_* is periodic in θ and exponentially decaying in Y.

We denote by U^k_* the Fourier coefficient, with respect to θ, of order n of the profile U_k. From the definition of $S = S \oplus S^*$, for $n \neq 0$, U^n_k is of the form $U^n_k = U^n_k(t, x, y)$, with $U^n_k \in S^*$ and U^n_k of is of the form $U^0_k = U^0_k(t, x, y) + U^0_k(t, x, Y)$, with $U_k \in S$ and $U^0_k \in S^*$.

For the sake of definitiveness, we suppose that the solution vanishes identically in the past: $\forall t \leq 0$, $U^ε(t) = 0$, and, to fix the ideas, that it is ignited by source terms $f^ε$ and $g^ε$ on the boundary, which we assume to be small and localized near the boundary:

$$f(t, x) \sim \sum_{k=2}^{\infty} \varepsilon^k f_k \left(t, x, \frac{x - ct}{\varepsilon}\right), \quad g(t, x) \sim \sum_{k=2}^{\infty} \varepsilon^k g_k \left(t, x, \frac{x - ct}{\varepsilon}\right),$$

with profiles f_k and g_k, belonging to S^*, that is exponentially decaying to 0 as Y tends to $+\infty$, and vanishing identically in the past: $\forall t \leq 0$, $f^ε(t) = g^ε(t) = 0$.

Remark 2.1. The order of magnitude $U = O(\varepsilon^2)$ and $f, g = O(\varepsilon^2)$ as $\varepsilon \to 0$ corresponds to the regime of weakly nonlinear geometric optics where the nonlinear effects are present in the propagation of the leading term U_2.

2.2. Main results

Theorem 2.2. The profile of main order U_2 belongs to S^*, i.e., is purely localized on the boundary: U_2 vanishes.

The profile of main order U_2 is determined by a scalar unknown $\alpha_2(t, x, \theta)$ which solves an equation

$$\partial_t \alpha_2 + c \partial_x \alpha_2 + a(\alpha_2, \alpha_2) = f_2, g_2$$

(4)

where f_2, g_2, up to a multiplicative constant, has Fourier coefficients of order n equal to $\frac{p_1}{m} f^n_2 + \frac{p_2}{q} g^n_2$ (p_1 and q given by (11)) and a is a nonlocal bilinear form such that the Fourier coefficients of order n of $a(\alpha_2, \alpha_2)$ are equal to

$$\sum_{k'=1}^{k} \Lambda_1(k, k')k'k(-k')\alpha_2(k)\alpha_2(k - k') + \sum_{k'=0}^{\infty} \Lambda_2(k, k')k(-k')\alpha_2(k'\alpha_2(k - k'),$$

where the expressions of the kernels Λ_1 and Λ_2 are given in [3].

This theorem is proved in Section 6: we show that U_2 solves the linearized equations of elasticity with homogeneous boundary conditions, so that it must vanish. The relation between U^*_2 and α_2 as well as the equation for α_2 are obtained in [3].

The main results of the Note are the following theorem and corollary:

Theorem 2.3. The profile of higher order U_3 is of the form $U_3 = U_3^0 + U_3^1$, with $U_3^0 = \left(\frac{u_3^0}{v_3^0}\right) \in S^*$ and $U_3 = \left(\frac{u_3}{v_3}\right) \in S$ satisfying

$$\partial_t u_3 - r \partial_{xx} u_3 - (r - 1) \partial_{xy} v_3 - \partial_{yy} u_3 = 0,$$

$$\partial_t v_3 - r \partial_{xx} v_3 - (r - 1) \partial_{xy} u_3 - \partial_{yy} v_3 = 0 \quad \text{in } y > 0,$$

$$\partial_y u_3 + \partial_t v_3 = A_r \sum_{n \in Z^*} |n| \partial_x \left(|\alpha_2(n, t, x)|\right)^2,$$

with $A_r = -\frac{2 q}{r p_1 + p_2} C_r \neq 0$.

$$\partial_t u_3 + r \partial_y v_3 = 0 \quad \text{on } y = 0.$$

(6b)

These equations are obtained in Section 7.
Remark 2.4. U_3^* is determined by U_2 and a scalar unknown $\alpha_3(t, x, \theta)$, which solves the linearized equation of (4).

Corollary 2.5. If f_2 and g_2 satisfy $\partial_l(f_2, g_2)|_{t=0} \neq 0$, then $U_3 \neq 0$.

Proof. Since u_2 and v_2, and thus α_2, vanish in the past, we have $\partial_l(\alpha_2)|_{t=0} = l(f_2, g_2)|_{t=0}$, and therefore, for t small, $\alpha_2 \sim tl(f_2, g_2)$; we then obtain that $\partial_l(f_2, g_2)|_{t=0} \neq 0$ yields $\sum_{n \in Z}\left|\delta_k((\alpha_2)(n, t, x))\right|^2 \neq 0$.

The right-hand side term of the first boundary condition satisfied by U_3 does not vanish, we then obtain that U_3 does not vanish. □

Remark 2.6. For example, we can take f_1 and f_2 such that their Fourier coefficients of order 1 satisfy $\partial_k(p_1 f_1^2 - iqg_2^2)|_{t=0} \neq 0$ in order to have $\partial_l(f_2, g_2)|_{t=0} \neq 0$ and thus $U_3 \neq 0$.

3. The cascade of equations

Plugging the expression (3) of U^c into the equations and boundary conditions and collecting the powers of ε yield, for all $k \geq 2$,

\begin{equation}
(c^2 - r)\partial_{tt}u_k - (r - 1)\partial_{ty}v_k - \partial_{yy}u_k = H_{k-1}(u_{k-1}, v_{k-1}, \ldots, u_2, v_2),
\end{equation}

\begin{equation}
(c^2 - 1)\partial_{ty}v_k - (r - 1)\partial_{ty}u_k - r\partial_{yy}v_k = K_{k-1}(u_{k-1}, v_{k-1}, \ldots, u_2, v_2) \quad \text{on } \{Y > 0, y > 0\}
\end{equation}

and

\begin{equation}
\partial_y u_k + \partial_y v_k = h_{k-1}(u_2, v_2, \ldots, u_{k-1}, v_{k-1}),
\end{equation}

\begin{equation}
(r - 2)\partial_y u_k + r\partial_y v_k = h_{k-1}(u_2, v_2, \ldots, u_{k-1}, v_{k-1}) \quad \text{on } Y = y = 0.
\end{equation}

In particular, $H_1 = K_1 = 0$, $h_1 = h_2 = 0$ and H_3 and h_3 are given by (the expressions of H_k, K_k, h_k and k_k for general k being similar):

\begin{equation}
H_3 = 2c\partial_{tt}u_3 + 2r\partial_{ty}u_3 + (r - 1)\partial_{ty}v_3 + (r - 1)\partial_{ty}v_3 + 2\partial_{yy}u_3 - \partial_{rt}u_2 + r\partial_{tx}u_2 + (r - 1)\partial_{ty}v_2 + \partial_{yy}u_2
\end{equation}

\begin{equation}
+ \delta_k[\partial_y u_3 + \partial_y v_3 + \partial_y v_3] + \delta_1[\partial_y v_3 - \partial_y u_3 + \partial_y v_3 + \partial_y u_3 + \partial_y v_3],
\end{equation}

\begin{equation}
h_3 = -\partial_y u_3 - \partial_y v_3 - \partial_y u_2 + \partial_y v_2) = h_0[\partial_y u_2(\partial_y u_3 + \partial_y v_3) + \partial_y v_2(\partial_y u_3 + \partial_y v_3)].
\end{equation}

4. Form of the oscillatory parts of the profile U_2

We define p_1, p_2 and q by

\begin{equation}
p_1^2 = 1 - c^2, \quad p_1 < 0, \quad p_2^2 = 1 - \frac{c^2}{r}, \quad p_2 < 0, \quad q^2 = p_1 p_2, \quad q > 0.
\end{equation}

In order to have the existence of surface waves, the following assumption has to be satisfied:

Assumption 4.1. We assume that

\begin{equation}
(2 - c^2)^2 = 4q^2.
\end{equation}

We obtain the following form of the Fourier coefficients $u_2^n, v_2^n, n \neq 0$

\begin{equation}
u_2^n(t, x, Y) = q\alpha_2(n, t, x)(qe^{p_1|n|Y} - e^{p_2|n|Y}),
\end{equation}

\begin{equation}v_2^n(t, x, Y) = i \text{sign}(n) p_2\alpha_2(n, t, x)(-e^{p_1|n|Y} + qe^{p_2|n|Y}),
\end{equation}

where α_2 is a scalar unknown satisfying Eq. (4).
5. Equation and boundary condition for U_k^0

5.1. Equations

The profiles u_k^0 and v_k^0 satisfy

$$-\partial_Y u_k^0 = H_{k-1}^0, \quad -r \partial_Y v_k^0 = K_{k-1}^0 \quad \text{in } y > 0, \ Y > 0. \quad (15)$$

Since $u_k^0, v_k^0 \in S$, we obtain the resolubility conditions

$$H_{k-1}^0 = K_{k-1}^0 = 0. \quad (16)$$

Eqs. (15) yield

$$u_k^0 = u_k^0(t, x, y) + u_k^{0*}(t, x, y, Y), \quad v_k^0 = v_k^0(t, x, y) + v_k^{0*}(t, x, y, Y), \quad (17)$$

with $u_k^0, v_k^0 \in S$ unknown functions that have to be determined and $u_k^{0*}, v_k^{0*} \in S^*$ known functions given by the following expressions:

$$u_k^{0*} = -\int_Y^{\infty} \left(\int_S^\infty H_{k-1}^0(t, x, y, s') \, ds' \right) \, ds, \quad (18)$$

$$v_k^{0*} = -\frac{1}{r} \int_Y^{\infty} \left(\int_S^\infty K_{k-1}^0(t, x, y, s') \, ds' \right) \, ds. \quad (19)$$

5.2. Boundary conditions for Fourier coefficients u_k^0 and v_k^0

The boundary conditions for u_k^0 and v_k^0 read

$$\partial_Y u_k^0 = h_{k-1}^0, \quad r \partial_Y v_k^0 = k_{k-1}^0, \quad \text{on } Y = y = 0. \quad (20)$$

Plugging the expressions (17) in (20), we obtain

$$\int_0^\infty H_{k-1}^0(t, x, y, s) \, ds = h_{k-1}^0(t, x, y, Y), \quad (21a)$$

$$\int_0^\infty K_{k-1}^0(t, x, y, s) \, ds = k_{k-1}^0(t, x, y, Y), \quad \text{on } Y = y = 0. \quad (21b)$$

5.3. Determination of u_k^0 and v_k^0

The Fourier coefficients u_k^0 and v_k^0 are determined in 3 steps. First, from Eqs. (15) with $k = l$, satisfied by u_l^0 and v_l^0, we obtain expressions of u_l^0 and v_l^0, where $u_l^0 \in S$ and $v_l^0 \in S$ have to be determined. Afterward, the boundary conditions (21) with $k = l + 1$ satisfied by u_{l+1}^0 and v_{l+1}^0 yield boundary conditions satisfied by u_{l+1}^0 and v_{l+1}^0 on $y = 0$. Finally, it follows from Eqs. (15) with $k = l + 2$, satisfied by u_{l+2}^0 and v_{l+2}^0, the resolubility conditions (16), which lead to equations satisfied by u_{l+2}^0 and v_{l+2}^0 on $y > 0$.

6. Determination of U_2^0

The equations satisfied by $u_2^0 \in S$, $v_2^0 \in S$, yield $u_2^0 = u_2 \in S$, $v_2^0 = v_2 \in S$.

The boundary conditions (20) for $k = 3$ read:

$$\partial_Y u_2 + \partial_Y v_2 = 0, \quad (r - 2) \partial_x u_2 + r \partial_y v_2 = 0, \quad \text{on } y = 0. \quad (22)$$

The resolubility conditions (16) $H_{l+2}^0 = K_{l+2}^0 = 0$ yield

$$\partial_Y u_2 - r \partial_{xx} u_2 - (r - 1) \partial_{xy} v_2 - \partial_{yy} u_2 = 0, \quad (23a)$$

$$\partial_Y v_2 - r \partial_{xx} v_2 - (r - 1) \partial_{xy} u_2 - r \partial_{yy} v_2 = 0, \quad \text{in } y > 0. \quad (23b)$$

From (22) and (23), we then obtain $u_2 = v_2 = 0$ and thus $u_2^0 = v_2^0 = 0$.

7. Determination of U_3^0

From $U_2^0 = 0$ and $U_2 \in S^*$ (thus U_2 independent of y) and (9), we get:

$$H_2^0 = \partial_y \left[(r-1) \partial_k v_3^0 + 2 \partial_k u_2^0 \right] + \partial_y \left[\partial_k u_2 \partial_k v_2 \right]$$

$$+ \partial_y \left[\partial_k v_2 \partial_k u_3 + \partial_k v_3 + \partial_k u_2 + \partial_y v_2 + (\partial_k v_3 + \partial_k v_2)(\partial_k u_2 + \partial_y v_2) \right].$$

Remark 7.1. For $f = f + f^* \in S = S + S^*$

$$\int_Y \partial_y f(t, x, y, \theta, s) \, ds = \lim_{Y \to +\infty} f(t, x, y, \theta, Y) = f(t, x, y, \theta, Y) = -f^*(t, x, \theta, Y).$$

Thus

$$\int_Y H_2^0(t, x, y, s) \, ds = \int_Y \partial_k \left[\partial_y u_2 \partial_k v_2^0 \right] \, ds - (r-1) \partial_k v_3^0 s - 2 \partial_k u_3^0 s$$

$$- \left[\partial_k v_2 \partial_k u_3 + \partial_k v_3 + \partial_k u_2 + \partial_y v_2 + (\partial_k v_3 + \partial_k v_2)(\partial_k u_2 + \partial_y v_2) \right].$$

From the expression of h_3 (10), we then obtain that (21a) for $k = 4$ reads

$$\partial_y v_3 + \partial_k v_3 = (r-2) \partial_k v_3^0 s - \int_0^\infty \partial_k \left[\partial_y u_2 \partial_k v_2 \right] \, ds, \quad \text{on } Y = y = 0. \quad (24)$$

From the expression of v_3^0 (19), Eq. (24) yields:

$$\partial_y u_3 + \partial_k u_3 = -\frac{2}{r} \int_0^\infty \partial_k \left[\partial_y u_2 \partial_k v_2 \right] \, ds \quad \text{on } y = 0. \quad (25)$$

The right-hand side term yields a quadratic interaction.

Plugging the expressions of u_2^0 and v_2^0 (13) and (14),

$$[\partial_k u_2 \partial_k v_2] = \sum_{n \in \mathbb{Z}^*} -|n|^2 q p_2 |\alpha_2(n, t, x)|^2 [-q p_1 e^{2|n| p_1} - q p_2 e^{2|n| p_2} + (q^2 p_1 + p_2) e^{i|n| (p_1 + p_2)}].$$

Thus with $C_r = -q (p_1 p_2 + p_2^2) + q^2 p_1 p_2 + p_2^2$

$$\int_0^\infty [\partial_k u_2 \partial_k v_2] \, ds = \sum_{n \in \mathbb{Z}^*} |n| \left[\frac{q}{p_1 + p_2} C_r |\alpha_2(n, t, x)|^2. \right.$$

From (11) and (12), we get $C_r = -q^2 - q p_2^2 + q^2 + p_2^2 = (1 - q)(p_2^2 - q^2) = \frac{c^2}{\gamma} [1 - \frac{c^2}{\gamma} - (1 - \frac{c^2}{\gamma})].$ c satisfies Eq. (12), therefore

$$1 - \frac{c^2}{\gamma} = q^2 = p_1^2 p_2 = (1 - c^2)(1 - c^2).$$

Since $1 - c^2 = p_1^2 > 0$, we have $1 - c^2 > 0$, thus

$$C_r = \frac{c^2}{2} \left[(1 - \frac{c^2}{\gamma})^2 - \left(1 - \frac{c^2}{\gamma} \right)^3 \right] = \frac{c^4}{4} (1 - \frac{c^2}{\gamma} - (1 - \frac{c^2}{\gamma})^3). \quad C_r > 0.$$

The boundary condition (25) is thus equivalent to Eq. (6a). Similarly, (21b) yields Eq. (6b) (in this case, we sum over \mathbb{N} odd terms with respect to n). The resolubility conditions (16) for $k = 5$, $H_4^0 = K_4^0 = 0$, yield (5).

Acknowledgements

The author is indebted to Guy Métivier for his precious help.

References