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The profiles of traveling wave solutions of a 1-d reaction–diffusion parabolic equation are
transformed into equilibria of a nonlocal equation, by means of an appropriate nonlocal
change of variables. In this new formulation both the profile and the propagation speed
of the traveling waves emerge as asymptotic limits of solutions of a nonlocal reaction–
diffusion problem when time goes to infinity. In this Note we make these results rigorous
analyzing the well-posedness and the stability properties of the corresponding nonlocal
Cauchy problem. We also analyze its restriction to a finite interval with consistent
boundary conditions. For large enough intervals we show that there is an asymptotically
stable equilibrium which approximates the profile of the traveling wave in R. This leads
to efficient numerical algorithms for computing the traveling wave profile and speed of
propagation.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cette Note nous considérons le développement de méthodes permettant de préciser
aussi bien les profils que la vitesse des ondes progressives pour des équations de réaction–
diffusion, modélisées par des équations paraboliques semi-linéaires à une dimension
d’espace. Moyennant un changement de variable non-local, les profils deviennent des
solutions stationnaires d’un problème d’évolution non-local. Nous démontrons que, dans
cette nouvelle formulation, aussi bien les profils que les vitesses de propagation des ondes
progressives deviennent des états stationnaires asymptotiques stables lorsque le temps
tend vers l’infini. On analyse aussi la restriction de ce nouveau problème non-local de
Cauchy en espace, à un intervalle d’espace fini. Lorsque l’intervalle d’espace tronqué est
assez grand on montre qu’il existe un état stationnaire unique et que si l’intervalle tend
vers la droite réelle toute entière, l’état stationnaire converge vers le profil de l’onde
progressive. Ceci permet de développer des méthodes numériques efficaces pour le calcul
des profils et vitesses de ces ondes progressives nonlinéaires.
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On considère l’équation de réaction–diffusion, l’Éq. (1). Sous des hypothèses convenables sur la nonlinéarité f on sait
qu’il existe une unique solution de la forme onde progressive u(x, t) = Φ(x − ct) (voir [7]). Le profil Φ et la vitesse de
propagation c vérifient l’Éq. (2), et sont couplés par l’Éq. (5) avec F (u) = ∫ u

0 f (s)ds.
On considère alors le problème non-local, l’Éq. (7). Naturellement, aussi bien les profils que les vitesses de propagation

des ondes progressives deviennent des états stationnaires de ce nouveau problème. Le premier résultat de cette Note assure
que cet état est stable et donc limite asymptotique lorsque le temps tend vers l’infini pour des données initiales adéquates.

On analyse ensuite la restriction de ce nouveau problème non-local de Cauchy en espace à un intervalle d’espace fini
(−L, L), avec des conditions aux limites de Dirichlet de la forme v(−L) = 0, v(L) = 1. Lorsque l’intervalle d’espace tronqué
est assez grand, on démontre qu’il existe un état stationnaire unique qui est exponentielement stable. On montre aussi que,
lorsque l’intervalle tend vers la droite réelle entière, cet état stationnaire converge vers le profil de l’onde progressive.

Ceci permet de développer des méthodes numériques efficaces de calcul des profils et vitesses de ces ondes nonlinéaires.
Il suffit, en effet, de résoudre l’équation tronquée non-locale en temps pour récupérer le profil et la vitesse de l’onde
progressive. On montre l’efficacité de cette méthode par diverses simulations numériques.

1. Introduction

We address the problem of the effective computation of traveling wave solutions emerging from parabolic semilinear
equations on the real line. We consider the prototype reaction–diffusion equation:{

ut(x, t) = uxx(x, t) + f
(
u(x, t)

)
, −∞ < x < +∞, t > 0,

u(x,0) = u0(x),
(1)

where the nonlinearity f is of bistable type as in [7], that is, f ∈ C1(R) with f (0) = f (1) = 0, f ′(0) < 0, f ′(1) < 0 and
there exists α ∈ (0,1) such that f (u) < 0 for u ∈ (0,α) and f (u) > 0, for u ∈ (α,1).

A traveling wave is a solution of (1) of the type u(x, t) = Φ(x − ct) where the function Φ is the profile of the travel-
ing wave and c is its speed of propagation. We will be mainly interested in “monotone” traveling waves (monotonic Φ)
connecting the two equilibria 0 and 1 (for instance Φ(−∞) = 0, Φ(+∞) = 1). The function Φ then necessarily fulfills the
second order equation{

Φ ′′(ξ) + cΦ ′(ξ) + f
(
Φ(ξ)

) = 0, −∞ < ξ < +∞,

0 � Φ � 1, Φ(−∞) = 0, Φ(+∞) = 1, Φ ′ > 0.
(2)

The following result on existence and stability of traveling waves is well known:

Theorem 1.1. (See [7].) Let f ∈ C1[0,1] be satisfying the above conditions. Then there exists a unique (except for translations) mono-
tone traveling front with range [0,1], i.e., there exists a unique c∗ and a unique (except for translations) monotone solution Φ of (2).

Furthermore, suppose that u0 is piecewise continuous, 0 � u0(x) � 1 for all x ∈ R, and

lim inf
x→+∞ u0(x) > α, lim sup

x→−∞
u0(x) < α. (3)

Then there exist x0 ∈ R, K ,ω > 0, such that the solution u to (1) satisfies
∣∣u(x, t) − Φ

(
x − c∗t − x0

)∣∣ < K e−ωt, x ∈ R, t > 0. (4)

From the numerical point of view, one of the main difficulties in the approximation of the profile Φ of the traveling
wave solutions and their propagation speed c is the need to set a finite computational domain. While the solution u evolves
into the traveling wave, it also moves left or right at speed c and it eventually may leave the chosen finite computational
domain. A natural approach is to perform the change of variables u(x, t) = v(x − ct, t), so that the resulting initial value
problem for v is given by vt = vxx + cvx + f (v) in the whole real line, with v(x,0) = u0(x). Then the solution v converges
to a standing wave of the type Φa , defined as Φa(x) = Φ(x − a), for some a ∈ R, which leads to the profile of the traveling
wave. However, in general, the value of c is not known a priori.

In this Note we consider a nonlocal change of variables leading to a new nonlocal Cauchy problem, a variant of the
reaction–diffusion above, that leads simultaneously to the traveling wave profile and speed.

2. Preliminaries on the nonlocal problem

To overcome this difficulty, several approaches have been developed in the literature. One possibility (see [3]) is to
consider the speed of propagation c as an appropriate function of the solution u and incorporate this function in the v
equation. As a matter of fact, if we multiply by Φ in (2), integrate by parts and use the behavior of Φ at x → ±∞, we get
that
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c = − F (1)

‖Φ ′‖2
L2(R)

(5)

where F (u) = ∫ u
0 f (s)ds.

If we expect v(·, t) to converge, as t → +∞, to a translate of the traveling wave profile Φ , we may also expect

λ(v) = F (1)

‖vx‖2
L2(R)

, (6)

to converge to c. This motivates the study of the nonlocal equation

vt = vxx − F (1)

‖vx‖2
L2(R)

vx + f (v), x ∈ R, t > 0; v(x,0) = u0(x). (7)

With a different argument, using the so-called “phase condition”, the authors in [3] obtained a partial differential alge-
braic equation, which is equivalent to the following nonlocal equation in the whole real line:

vt = vxx − 〈 f (v), vx〉L2(R)

‖vx‖2
L2(R)

vx + f (v), x ∈ R, t > 0; v(x,0) = u0(x). (8)

In [3] the authors implement appropriate numerical schemes to (8) to approximate the traveling wave solution and in [4]
they analyze the stability properties of the traveling wave of (8). But they do not analyze the relation between (8) and its
restriction to a finite interval neither the stability properties of the equilibria in a finite interval. Related nonlocal equations
have been treated in [10] where the Evans function for nonlocal equations has been developed to analyze the spectrum.

Our first main result, concerning the asymptotic convergence towards the traveling wave profile and speed for this
nonlocal problem, is as follows:

Theorem 2.1. Under the hypotheses of Theorem 1.1 and assuming further that u′
0 ∈ L1(R) ∩ L2(R), the nonlocal problem (7) is well-

posed and its solution v is given by

v(x, t) := u
(
x + γu(t), t

)
, x ∈ R, t > 0, (9)

with

γu(t) := −
t∫

0

F (1)

‖ux(·, s)‖2
L2(R)

ds, t > 0, (10)

where u denotes the unique classical solution to (1). In particular, for each x∗ ∈ R, the function Φ(· − x∗) is a “stationary” solution
of (7) (standing wave).

Let ω0 = min{β,η} > 0, with β = min{− f ′(0),− f ′(1)} > 0 and −η < 0 the largest real part of any non-zero eigenvalue of the
operator

L∞
0 w := w ′′ + c∗w ′ + f ′(Φ)w, −∞ < x < ∞, (11)

see [9]. Then for any ω̄ < ω0 there exist x∗ ∈ R and a positive constant C such that

sup
x∈R

∣∣v(x, t) − Φ
(
x − x∗)∣∣ + ∣∣λv(t) − c∗∣∣ � C1e−ω̄t, t > 0, (12)

where c∗ is the propagation speed in Theorem 1.1, λv as in (6) and Φ the unique (except for translations) solution to (2).

This theorem can be proved using the well known results about the local problem (1) (see Theorem 1.1 above) and
analyzing carefully the change of variables that transforms it into the modified nonlocal one (7).

3. Stationary solutions for a truncated nonlocal problem

Theorem 2.1 is relevant from a numerical analysis and computational viewpoint. Indeed, it guarantees that, if we fix a
sufficiently large computational domain, the core of the solution will not leave this window. Thus, in view of the asymptotic
convergence result as t tends to infinity, a suitable approximation of this nonlocal problem should enable us to approximate
the traveling wave profile. But, when implementing a numerical scheme on a truncated bounded domain, we will need
also to impose some “artificial” boundary conditions. We choose non-homogeneous Dirichlet boundary conditions, which
emulate the behavior of the profile at ±∞ on the boundaries of the domain.

Summarizing, in practice, we will need to consider the following dynamics generated by the nonlocal reaction–diffusion
problem in the bounded interval (a,b):
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vt = vxx − F (1)

‖vx(·)‖2
L2(a,b)

vx + f (v), x ∈ (a,b), t > 0,

v(a, t) = 0; v(b, t) = 1, t > 0,

v(x,0) = u0(x), x ∈ (a,b).

(13)

The well posedness of this system in the space H = {u ∈ H1(a,b), u(a) = 0, u(b) = 1} follows standard arguments (notice
that if u ∈ H then ‖ux‖2

L2(a,b)
� (b − a)−1 and therefore the nonlocal term is not singular).

Our second main result refers to the asymptotic behavior of the solutions of this new problem. In particular, we are
interested on its stationary solutions, its stability properties and its relations with the profile Φ of the traveling wave of the
original problem.

It is easy to see that the stationary solutions of (13) depend only on the length of the interval (a,b) and not on the
actual value of its extremes.

Using appropriate phase plane techniques, we prove the following:

Theorem 3.1. For a fixed interval (a,b) we denote r = b − a. Then,

(i) (Existence and uniqueness) There exists one and only one stationary solution Φ(a,b) of (13) with 0 � Φ(a,b)(x) � 1. Moreover, this
solution is strictly monotone increasing.

(ii) (Approximation of the speed) Let λ(a,b) = −F (1)/‖Φ ′
(a,b)

‖2
L2(a,b)

. Then, λ(a,b) = λ
(â,b̂)

if b −a = b̂ − â and λ(a,b) → c∗ as b −a →
+∞, where c∗ is the speed of propagation of the traveling wave of the original problem (1).

(iii) (Approximation of the profile) Let us denote by θ the unique point in (a,b) which satisfies Φ(a,b)(θ) = 1/2 and let us denote
by Φr(x) = Φ(a,b)(x + θ) for x ∈ (a − θ,b − θ). Let also a(r) = a − θ and b(r) = b − θ (which truly depend only on r). Let us
normalize in a similar way the traveling wave solution, so that Φ∞(0) = 1/2. Then

‖Φr − Φ∞‖W 1,∞(R) + ∥∥Φ ′
r − Φ ′∞

∥∥
L2(R)

→ 0, as r → ∞,

where the function {Φr} is extended by 0 to the left of a(r) and by 1 to the right of b(r).

4. Asymptotic stability of the stationary solutions of the nonlocal problem

Our last main result ensures the stability of the stationary solutions of the nonlocal problem. This result is particularly
relevant from a numerical analysis and computational viewpoint since it guarantees that when solving accurately the local
problem for a sufficiently large time one will get an accurate approximation of the traveling wave profile and its speed.

The equilibrium Φr will be asymptotically stable if the spectrum of the linear operator Lr : D(Lr) ⊂ L2(a,b) → L2(a,b)

with D(Lr) = H2(a,b) ∩ H1
0(a,b), given by

Lr w := wxx + λ(Φr)wx + f ′(Φr)w + 2λ(Φr)

‖Φ ′
r‖2

2

Φ ′
r

b∫
a

wΦ ′′
r (14)

is contained in the left half of the complex plane.
Observe that Lr w = Lr

0 w +Πr(w), where Lr
0 w = wxx +λ(Φr)wx + f ′(Φr)w is a “standard” Sturm–Liouville type operator

and Πr(w) is the nonlocal linear operator, which has 1-dimensional rank. This operator is of the form w → A〈w, B〉 with
A(·) = 2λ(Φr )

‖Φ ′
r‖2

2
Φ ′

r(·) and B(·) = Φ ′′
r (·) = −λ(Φr)Φ

′
r(·) − f (Φr(·)) and it is a bounded operator from L2 to L2 with finite rank.

Several properties of the operator Lr are inherited from the operator Lr
0: both operators have the same domain and both

have compact resolvent. Therefore, their spectra are discrete, that is, formed by eigenvalues with finite multiplicity. Never-
theless, all the eigenvalues of operator Lr

0 are real (there is a standard change of variables transforming Lr
0 to a selfadjoint

operator) but the operator Lr may not have this property. Actually, unless A ≡ B operator Lr is not selfadjoint.
There are several results on the spectra of operators of the form w → Lr

0(w) + A〈w, B〉 but none of them guarantees
that, for our particular case, the spectrum lies in the half complex plane with negative real part. Actually, with the known
results in the literature we are not even able to ensure that the spectrum of Lr is real (see [5,6,8] and references therein,
for results in this direction).

One important observation is that in the case that the interval is the complete real line, that is r = ∞, then Φ ′∞ is the
eigenfunction associated to the eigenvalue 0 for the operator L∞

0 and therefore the operator L∞ = L∞
0 + π∞(w)Φ ′∞ has a

special structure that will allow us to show that σ(L∞) = σ(L∞
0 ) and that 0 ∈ σ(L∞) with multiplicity 1. The fact that Φ ′

r
is not an eigenfunction of Lr

0, for finite r (as a matter of fact Φ ′
r does not even satisfy homogeneous Dirichlet boundary

conditions) will not permit us to perform a similar argument in a bounded interval. Paradoxically, the analysis in the whole
real line is “simpler” than the analysis in a bounded interval.

Nevertheless we will be able to prove the asymptotic stability of the stationary solution of the nonlocal problem (13) for
large enough intervals using a perturbative method. Let us highlight the main steps of the proof of stability. We refer to [1]
for the details of the proofs.
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Step 1. On the spectrum of Lr .
From the convergence of Φr and λ(Φr) obtained above in Theorem 3.1 and using the structure of the operator Lr , we

easily show the following result:

Proposition 4.1. There exist ρ0 ∈ R
+ and φ ∈ (π/2,π) such that if we define the sector Σρ0,φ = {z ∈ C, |arg(z − ρ0)| > φ}, then

σ(Lr) ⊂ Σρ0,φ for all r � 1.

Moreover, we are also able to show:

Proposition 4.2. There is no real eigenvalue μ � 0 in σ(Lr).

Step 2. On the spectrum of L∞ .
This operator is the one associated to the linearization around the stationary state Φ∞ , which can be written as L∞ =

L∞
0 + Π∞ , where L∞

0 is given by (11) and Π∞ stands for the linear nonlocal operator

Π∞(w) = −2λ(Φ∞)

‖Φ ′∞‖2
2

Φ ′∞

∞∫
−∞

Φ ′∞wx. (15)

The fact that both L∞
0 and L∞ are sectorial operators and that Φ ′∞ is the eigenfunction of L∞

0 associated to the eigen-
value μ = 0, allows us to prove

Proposition 4.3. σ(L∞) = σ(L∞
0 ) and 0 ∈ σ(L∞). In particular

(i) The essential spectrum σess(L∞) ⊂ {z ∈ C: Re z � max{ f ′(0), f ′(1)}}.
(ii) There exists 0 < ν < −max{ f ′(0), f ′(1)} such that σ(L∞) ∩ {z ∈ C: Re z � −ν} = {0}. Moreover, the eigenfunction associated

to the eigenvalue μ = 0 is Φ ′∞ and it is an algebraically simple eigenvalue of L∞ , that is, Ker((L∞)2) = Ker(L∞) = span{Φ ′∞}.

Step 3. Passing to the limit.
The asymptotic stability of the stationary solution Φr of the nonlocal problem for large enough r is obtained via the

convergence of the spectrum of the operator Lr to L∞ in bounded sets of the complex plane away from the essential
spectrum of L∞ . In order to prove this spectral convergence we will use the theory of regular convergence developed in [11].
Notice that in [2] they show this convergence for the local operators only. The use of the theory of exponential dichotomies
becomes an essential ingredient in the proof. Adapting the proof of [2] to our operators, which have a nonlocal term but
which is compact, will allow us to prove the required spectral convergence. Putting together this spectral convergence and
Proposition 4.2, we are able to show:

Theorem 4.1. For every fixed ε > 0, there exists an r0 > 0 such that for all r � r0 we have σ(Lr)∩{Re z > −ν +ε} = {s(r)}. Moreover,
s(r) < 0 is a simple eigenvalue of Lr and s(r) → 0 as r → +∞. In particular, the unique stationary solution of (13) is asymptotically
stable.

5. Numerical examples

In this section we propose numerical examples showing the efficiency of the methods analyzed in this paper. We consider
the prototypical Nagumo equation, given by (1) with f (u) = u(1 − u)(u − α), α ∈ (0,1/2). In this case an explicit traveling
wave solution u(x, t) = Φ(x − ct) is known, where Φ(x) = (1 + e−x/

√
2)−1 and c = √

2(α − 1/2).

Fig. 1. Solution for u0(x) = x+ J
2 J , evolution of λv and evolution of the error in the approximation of c for J = 40 and �x = 0.1 and 0.025.
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Fig. 2. Solution for u0(x) = 1
2 (1 + 0.53 x

J + 0.47 sin(− 3πx
2 J )), evolution of λv and evolution of the error in the approximation of c for J = 40 and �x = 0.1

and 0.025.

We fix J > 0, α = 1/4, a final time T = 150 and consider the numerical integration of (13) in the interval [− J , J ] with
[0,1]-Dirichlet boundary conditions. We apply the method of lines and use for the spatial discretization standard finite
differences formulas, centered for the approximation of vx , on the uniform grid x j = − J + j�x, 1 � j � M − 1, �x = 2 J/M .
We consider different values of J and M and two different initial data. The nonlocal term λv is approximated by using the
scalar product of the vector with the values of vx at the grid points x j . Our results are shown in Figs. 1 and 2.
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