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We study the Restricted Isometry Property of a random matrix Γ with independent
isotropic log-concave rows. To this end, we introduce a parameter Γk,m that controls
uniformly the operator norm of sub-matrices with k rows and m columns. This parameter
is estimated by means of new tail estimates of order statistics and deviation inequalities
for norms of projections of an isotropic log-concave vector.
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r é s u m é

On étudie la propriété d’isométrie restreinte d’une matrice aléatoire Γ dont les lignes
sont des vecteurs aléatoires indépendants isotropes log-concave. Pour cela on introduit un
paramètre Γk,m qui contrôle uniformément les normes d’opérateurs des sous-matrices de
k lignes et m colonnes. Ce paramètre est estimé à l’aide de nouvelles inégalités de queue
des statistiques d’ordre et d’inégalités de déviation des normes de projections d’un vecteur
aléatoire log-concave.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let T ⊂ R
N and Γ be an n × N matrix. Consider the problem of reconstructing any vector x ∈ T from the data Γ x ∈ R

n ,
with a fast algorithm. Clearly one needs some a priori hypothesis on the subset T and of course, the matrix Γ should be
suitably chosen. The common and useful hypothesis is that T consists of sparse vectors, that is vectors with short support.
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In that setting, Compressed Sensing provides a way of reconstructing the original signal x from its compression Γ x with
n � N by the so-called �1-minimization method. The problem of reconstruction can be reformulated after D. Donoho [10]
in a language of high-dimensional geometry, namely, in terms of neighborliness of polytopes obtained by taking the convex
hull of the columns of Γ . In this spirit, the sensing matrix is described by its columns. From another point of view, the
matrix Γ may be also determined by measurements, e.g. by its rows.

Let 0 � m � N . Denote by Um the subset of unit vectors in R
N , which are m-sparse, i.e. have at most m non-zero

coordinates. The natural scalar product, the Euclidean norm and the unit sphere are denoted by 〈·,·〉, | · | and S N−1. We also
denote by the same notation | · | the cardinality of a set. For any x = (xi) ∈ R

n we let ‖x‖∞ = maxi |xi |. By C , C1, c, etc. we
will denote absolute positive constants.

Let δm = δm(Γ ) = supx∈Um
||Γ x|2 − E|Γ x|2| be the Restricted Isometry Property (RIP) parameter of order m. This concept

was introduced by E. Candés and T. Tao in [9] and its important feature is that if δ2m is appropriately small then every
m-sparse vector x can be reconstructed from its compression Γ x by the �1-minimization method. The goal now is to check
this property for certain models of matrices.

The articles [1–5] considered random matrices with independent columns, and investigated high-dimensional geometric
properties of the convex hull of the columns and the RIP for various models of matrices, including the log-concave Ensemble
build with independent isotropic log-concave columns. It was shown that various properties of random vectors can be
efficiently studied via operator norms and the parameter Γn,m recalled below. In order to control this parameter an efficient
technique of chaining was developed in [3] and [4].

In [14], the authors studied the RIP and more generally the parameter δT = supx∈T ||Γ x|2 − E|Γ x|2| for random matrices
with independent isotropic subgaussian rows. It is natural to ask whether random matrices with independent isotropic
log-concave rows also have the RIP.

Fix integers n, N � 1. Let Y1, . . . , Yn be independent random vectors in R
N and let Γ be the n × N random matrix with

rows Yi . Let T ⊂ S N−1 and 1 � k � n and define the parameter Γk(T ) by

Γk(T )2 = sup
y∈T

sup
I⊂{1,...,n}

|I|=k

∑
i∈I

∣∣〈Yi, y〉∣∣2
. (1)

We also denote Γk,m = Γk(Um). The role of this parameter with respect to the RIP is revealed by the following lemma
which reduces a concentration inequality to a deviation inequality:

Lemma 1. Let Y1, . . . , Yn be independent isotropic random vectors in R
N . Let T ⊂ S N−1 be a finite set. Let 0 < θ < 1 and B � 1. Then

with probability at least 1 − |T |exp(−3θ2n/8B2) one has

sup
y∈T

∣∣∣∣∣
1

n

n∑
i=1

(∣∣〈Yi, y〉∣∣2 − E
∣∣〈Yi, y〉∣∣2)∣∣∣∣∣ � θ + 1

n

(
Γk(T )2 + EΓk(T )2),

where k � n is the largest integer satisfying k � (Γk(T )/B)2 .

In this note we focus on the compressed sensing setting where T is the set of sparse vectors. Lemma 1 shows that after
a suitable discretization, checking the RIP reduces to estimating Γk,m . The idea of such an approach, when k = n, originated
from the work of J. Bourgain [8] on the empirical covariance matrix. It was developed in [3] and [5] (with T = Um), where
the estimate of Γn,m played a central role for solving the Kannan–Lovász–Simonovits conjecture related to complexity of
computing high-dimensional volumes [11]; and it was studied in [13], where Γk(T ) was estimated by means of Talagrand
γ -functionals.

Using Lemma 1 it can be shown (cf., [5] for a similar argument) that if 0 < θ < 1, B � 1, and m � N satisfies
m log(C N/m) � 3θ2n/16B2, then with probability at least 1 − exp(−3θ2n/16B2) one has

δm(Γ /
√

n) = sup
y∈Um

∣∣∣∣∣
1

n

n∑
i=1

(∣∣〈Yi, y〉∣∣2 − E
∣∣〈Yi, y〉∣∣2)∣∣∣∣∣ � Cθ + C

n

(
Γ 2

k,m + EΓ 2
k,m

)
, (2)

where k � n is the largest integer satisfying k � (Γk,m/B)2 (note that k is a random variable).
We consider the log-concave Ensemble of n × N matrices with independent isotropic log-concave rows. Recall that a

random vector is isotropic log-concave if it is centered, its covariance matrix is the identity and its distribution has a log-
concave density. Our goal is to bound Γk,m for this Ensemble. This leads to questions that require a deeper understanding
of some geometric parameters of log-concave measures, such as tail estimates for order statistics and deviation inequalities
for norms of projections. Proofs and related results will be presented in [6].

2. Main results

Our main result, Theorem 6, provides upper estimates for Γk,m valid with large probability for matrices from the log-
concave Ensemble. To achieve this we need some intermediate steps also of a major importance. For a random vector X and
p > 0, we define the following natural parameter:
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σX (p) = sup
t∈S N−1

(
E

∣∣〈t, X〉∣∣p)1/p
.

It is known that σX (p) � p for isotropic log-concave X and p � 2. Paouris’ Theorem ([15]) states

(
E|X |p)1/p � C

((
E|X |2)1/2 + σX (p)

)
. (3)

It is a consequence of Theorem 8.2 combined with Lemma 3.9 in [15], note that Lemma 3.9 holds not only for convex bodies
but for log-concave measures as well.

We extend the Paouris Theorem to the following bound on deviations of norm of projections of an isotropic log-concave
vector, uniform over all coordinate projections P I of a fixed rank:

Theorem 2. Let m � N and X be an isotropic log-concave vector in R
N . Then for every t � 1 one has

P

(
sup

I⊂{1,...,N}
|I|=m

|P I X | � Ct
√

m log

(
eN

m

))
� exp

(
−t

√
m√

log(em)
log

(
eN

m

))
.

This theorem is sharp up to
√

log(em) in the probability estimate as the case of a vector with independent exponential
coordinates shows. Actually our further applications require a stronger result in which the bound for probability is improved
by involving the parameter σX and its inverse σ−1

X , namely

Theorem 3. Let m � N and X be an isotropic log-concave vector in R
N . Then for any t � 1,

P

(
sup

I⊂{1,...,N}
|I|=m

|P I X | � Ct
√

m log

(
eN

m

))
� exp

(
−σ−1

X

(
t
√

m log( eN
m )√

log(em/m0)

))
,

where m0 = m0(X, t) = sup{k � m: k log(eN/k) � σ−1
X (t

√
m log(eN/m))}.

Theorem 3 is based on tail estimates for order statistics of isotropic log-concave vectors. By (X∗(i))i we denote the
non-increasing rearrangement of (|X(i)|)i . Combining (3) with methods of [12] we obtain

Theorem 4. Let X be an N-dimensional isotropic log-concave vector. Then for every t � C log(eN/�),

P
(

X∗(�) � t
)
� exp

(−σ−1
X

(
C−1t

√
�
))

.

Introduction of the parameter σX enables us to obtain new inequalities for convolutions of log-concave measures. Let
X1, . . . , Xn be independent isotropic log-concave random vectors in R

N . We will consider weighted sums of the vectors Xi
of the form Y = ∑n

i=1 xi Xi , where x = (x1, . . . , xn) ∈ R
n . Bernstein’s inequality and ψ1 estimate for isotropic log-concave

random vectors give σY (p) � C(
√

p|x| + p‖x‖∞) for p � 1. Together with Theorem 3 this yields the following:

Corollary 5. Assume that |x| � 1 and 1 � b � max(‖x‖∞,1/
√

m). Then for any t � 1,

P

(
sup

I⊂{1,...,N}
|I|=m

|P I Y | � Ct
√

m log

(
eN

m

))
� exp

(
− t

√
m log( eN

m )

b
√

log(e2b2m)

)
.

We now pass to bounds on deviation of Γk,m . To get a slightly simplified formula we assume that N � n.

Theorem 6. Let 1 � n � N, and let Γ be an n × N random matrix with independent isotropic log-concave rows. For any integers k � n,
m � N and any t � 1, we have

P(Γk,m � Ctλ) � exp
(−tλ/

√
log(3m)

)
,

where λ = √
log log(3m)

√
m log(eN/m) + √

k log(en/k).

The threshold value λ in Theorem 6 is optimal, up to the factor of
√

log log(3m). Assuming additionally unconditionality
of the distributions of the rows, we can remove this factor and get a sharp estimate ([7]).

The proof of the above theorem is composed of two parts, depending on the relation between k and the quantity
k′ = inf{� � 1: m log(eN/m) � � log(en/�)}. First, we adjust the chaining argument from [3] to reduce the problem to the
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case k � k′ . This step also involves Theorem 2. Next, we use Corollary 5 combined with another chaining to complete the
argument.

Theorem 6 together with (2) allows us to prove the RIP result for matrices Γ with independent isotropic log-concave
rows. The result is optimal, up to the factor log log 3m, as shown in [4]. As for Theorem 6, assuming unconditionality of the
distributions of the rows, we can remove this factor ([7]).

Theorem 7. Let 0 < θ < 1, 1 � n � N. Let Γ be an n × N random matrix with independent isotropic log-concave rows. There exists
c(θ) > 0 such that δm(Γ /

√
n) � θ with overwhelming probability whenever

m log2(2N/m) log log 3m � c(θ)n.
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