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In this Note, we present a new formalism for nonlinear and non-separable multiscale
representations. The new formalism we propose brings about similarities between existing
nonlinear multiscale representations and also allows us to alleviate the classical hypotheses
made to prove the convergence of the multiscale representations.
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r é s u m é

Dans cette Note, on propose un nouveau formalisme pour les représentations multi-
échelles non-linéaires et non-séparables. Tout en gardant des similarités avec les résultats
théoriques existants, celui-ci permet d’obtenir des théorèmes de convergence et stabilité
sous des hypothèses plus faibles.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Nonlinear multiscale representations are naturally defined using nonlinear prediction operators. In applications, it may
be of interest to define multiscale representations that are not based on a dyadic grid. Several examples exist in image pro-
cessing where the use of representations built using non-dyadic grids significantly improves the compression performance
[2]. We define Lipschitz-Linear prediction operators in that context, and we give several examples of such operators, namely
the recently introduced PPH scheme. We give convergence and stability results of the nonlinear multiscale representations
based on Lipschitz-Linear prediction operators both in L p and Besov spaces. These results are part of a much deeper study
available in [4]. A new aspect is introduced, namely the notion of prediction operators compatible with a set of differences.
The results on the convergence and the stability of the corresponding multiscale representations are identical to those
obtained for representations based on Lipschitz-Linear prediction operators. For applications, the interesting aspect of this
notion of compatibility is that it enables to reduce the complexity of the study of the joint spectral radius. We conclude
the paper showing the convergence of some nonlinear multiscale representations associated with Lipschitz-Linear prediction
operators, namely the PPH scheme.
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Before we start, we need to introduce some standard multi-index notations. For example, for α = (α1, . . . ,αd) ∈ N
d
0

we write |α| = ∑d
i=1 αi and for x ∈ R

d we write xα = xα1
1 · · · xαd

d , monomial with degree |α|. By (e1, . . . , ed) we denote
the canonical basis on Z

d . The finite number of all monomials xα with degree N is denoted by rd
N . We then introduce∏

N the space of polynomials of degree N generated by {xα = ∏d
i=1 xαi

i , |α| � N}. In what follows, we will write deg(p)

for the degree of any polynomial p. With that in mind, we denote, for any multi-index α and any sequence (vk)k∈Zd :

�α vk = �
α1
e1 · · ·�αd

ed
vk where �

αd
ed

vk is defined recursively by: �
αd
ed

vk = �
αd−1
ed

vk+ed − �
αd−1
ed

vk. For a given multi-index α,
we will say that �α is a difference of order |α|. For any N ∈ N, we will denote �N vk = {�α vk, |α| = N}.

2. Multiscale representations

We assume that we are given the data (v j
k)k∈Zd , j � 0, associated to the locations Γ j = {M− jk, k ∈ Z

d}, where M is
a dilation matrix, (i.e. an invertible matrix in Z

d × Z
d satisfying limn→+∞ M−n = 0). We also consider that there exists

a prediction operator S that computes v̂ j = S v j−1, an approximation of v j . Then, we define the prediction error as e j =
v j − v̂ j . The information contained in v j is completely equivalent to (v j−1, e j). By iterating this procedure from the initial
data v J , we obtain its nonlinear multiscale representation Mv J = (v0, e1, . . . , e J ) [3]. Conversely, assume that the sequence
(v0, (e j) j�0) is given, we are interested in studying the convergence of the following nonlinear iteration:

v j = S v j−1 + e j, (2.1)

to a limit function v , which is defined as the limit (when it exists) of v j(x) = ∑
k∈Zd v j

kϕ j,k(x), where ϕ j,k(x) denotes
ϕ(M j x − k) and ϕ is some compactly supported function satisfying the scaling equation:

ϕ(x) =
∑

n∈Zd

gnϕ(Mx − n) with
∑

n

gn = m := ∣∣det(M)
∣∣. (2.2)

When the sequence of functions (v j) j�0 is convergent to some limit function in some functional space, by abusing a little
bit terminology, we say that the multiscale representations (v0, (e j) j�0) is convergent in that space. The scaling equation
(2.2) gives rise to the definition of a local and linear prediction operator Sl as follows:

Sl vk =
∑
l∈Zd

gk−Ml vl. (2.3)

3. Lipschitz-Linear prediction operators

In the following, a nonlinear prediction operator is a map v ∈ �∞(Zd) �→ S v ∈ �∞(Zd). In this paper, we study a particular
type of nonlinear prediction operators defined by the sum of the linear prediction operator Sl and of a perturbation term
which we define hereafter. The linear prediction operator shall satisfy the polynomial reproduction property which we now
recall:

Definition 3.1. We say that a prediction operator S reproduces polynomials of degree N if for uk = p(k) for any p ∈ ∏
N , we

have

Suk = p
(
M−1k

) + q(k)

where q is a polynomial such that deg(q) < deg(p). When q = 0, we say that the prediction operator exactly reproduces
polynomials.

With this in mind, we introduce the definition of a Lipschitz-Linear prediction operator:

Definition 3.2. A prediction operator S is Lipschitz-Linear of order N + 1, if it is the sum of the linear prediction oper-
ator Sl , assuming to reproduce polynomials of degree N , and of perturbation terms defined using Lipschitz functions Φi
i = 0, . . . ,m − 1, such that Φi(0) = 0, as follows:

S v Mk+i = Sl v Mk+i + Φi
(
�N+1 vk+p1 , . . . ,�

N+1 vk+pq

) ∀i ∈ coset(M)

where {p1, . . . , pq} is a fixed set and where M is the dilation matrix associated to the definition of Sl .
Let us consider Q := Z/MZ, Q is made of m equivalence classes which are called cosets associated with the matrix M .

We define the set of representatives of the cosets C(M) by {0} ∪ {MU ∩ Z} where U = ]0,1[d .

From the above definition, we remark that when Sl reproduces polynomials of degree N so does S .
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4. One-dimensional Lipschitz-Linear prediction operators

We start by considering the one-dimensional case with M = 2. Given a set of embedded grids Γ j = {2− jk, k ∈ Z} we
consider discrete values v j

k defined on each vertex of these grids. These quantities shall represent a certain function v at
level j. As an illustration, we show that the PPH scheme is an example of Lipschitz-Linear prediction operator [1]. The PPH

scheme is defined by: v̂ j
2k+1 = v j−1

k+1+v j−1
k

2 − 1
8 H(�2 v j−1

k−1,�
2 v j−1

k ) and v̂ j
2k = v j−1

k where H(x, y) := xy
x+y (sign(xy) + 1). Since

H satisfies |H(x, y) − H(x′, y′)| � 2 max{|x − x′|, |y − y′|}, it is a Lipschitz function and since |H(x, y)| � |max(x, y)| it is

bounded. Finally, the linear scheme
v j−1

k+1+v j−1
k

2 reproduces polynomials of degree 1, therefore the PPH-scheme is a Lipschitz-
Linear prediction operator of order 2.

5. Multi-dimensional Lipschitz-Linear prediction operators on non-dyadic grids

The motivation to consider non-dyadic grids are, for instance, better image compression results (see [2]). Having defined
the grid Γ j = {M− jk, k ∈ Z

d} using a dilation matrix M , we consider discrete quantities v j
k defined on each of these grids.

They shall represent a certain approximation of a function v at level j. As an illustration, we consider the bidimensional
PPH-scheme defined by where the grids Γ j are associated with the quincunx matrix M . We consider the following extension

of the PPH scheme to the bidimensional case: v̂ j
Mk+e1

= v j−1
k +v j−1

k+Me1
2 − 1

8 H(�2
Me1

v j−1
k ,�2

Me1
v j−1

k−Me1
) and v̂ j

Mk = v j−1
k . Note

that the linear part of the prediction operator is obtained by considering the affine interpolation polynomial at v j−1
k , v j−1

k+e1

and v j−1
k+e1+e2

and thus reproduces polynomials of degree 1. Since the perturbation is associated to a bounded Lipschitz
function of the differences of order 2, this multi-dimensional prediction operator is Lipschitz-Linear of order 2.

6. Convergence theorems

The convergence theorems are obtained by studying the difference operators associated to Lipschitz-Linear prediction
operators. The existence of such difference operators is ensured by the following theorem:

Theorem 6.1. Let S be a Lipschitz-Linear prediction operator of order N + 1 then there exist multi-dimensional local operators S(k) ,
k � N + 1 such that �k S v = S(k)�k v.

To study the convergence of the iteration (2.1), we introduce the definition of the joint spectral radius for difference
operators:

Definition 6.2. Let us consider a Lipschitz-Linear prediction operator S of order N + 1. The joint spectral radius in (�p(Zd))rd
k

of S(k) , for k � N + 1 is given by

ρp
(

S(k)
) := inf

j�0

∥∥(
S(k)

) j∥∥1/ j

(�p(Zd))
rd
k →(�p(Zd))

rd
k

= inf
j>0

{
ρ,

∥∥�k S j v
∥∥

(�p(Zd))
rd
k

� ρ j
∥∥�k v

∥∥
(�p(Zd))

rd
k

}
. (6.1)

We then have the following

Theorem 6.3. Let S be a Lipschitz-Linear prediction operator of order N + 1. Assume that ρp(S(k)) < m1/p , for some k � N + 1 and
that ‖v0‖�p(Zd) + ∑

j>0
m− j/p‖e j‖�p(Zd) < ∞. Then, the limit function v belongs to L p(Rd) and

‖v‖L p(Rd) � C

(∥∥v0
∥∥

�p(Zd)
+

∑
j>0

m− j/p
∥∥e j

∥∥
�p(Zd)

)
for some C > 0. (6.2)

Remark 1. Usually the convergence in L p is associated to the condition ρp(S(1)) < m1/p . With a Lipschitz-Linear prediction
operator of order N + 1, the convergence in L p(Rd) is ensured provided ρp(S(k)) < m1/p , for some k � N + 1.

The above theorem can easily by extended to a new inverse theorem in Besov spaces.

7. Stability in L p and Besov spaces

In applications, the multiscale data may be corrupted by some process. Since our model is nonlinear the inverse the-
orems does not ensure the stability. We develop here stability results for our new nonlinear formalism. To this end, we
consider two data sets (v0, e1, e2, . . .) and (ṽ0, ẽ1, ẽ2, . . .) corresponding to two reconstruction processes: v j = S v j−1 + e j
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and ṽ j = S ṽ j−1 + ẽ j . In that context, we recall the definition of v as the limit of v j(x) = ∑
k∈Zd v j

kϕ j,k(x), with ϕ j,k(x) =
ϕ(M j x−k) (and similarly for ṽ). The stability of the multiscale representation in L p(Rd), is stated by the following theorem:

Theorem 7.1. Let S be a Lipschitz-Linear prediction operator of order N + 1, and suppose that there exist an n and a ρ < m1/p such
that: ∥∥(

S(k)
)n

v − (
S(k)

)n
w

∥∥
(�p(Zd))

rd
k

� ρn‖v − w‖
(�p(Zd))

rd
k

∀v, w ∈ (
�p(

Z
d))rd

k ,

for some k � N + 1. Assume that v j and ṽ j converge to v and ṽ in L p(Rd) respectively. Then, we have:

‖v − ṽ‖L p(Rd) � C

(∥∥v0 − ṽ0
∥∥

L p(Rd)
+

j∑
l=1

m−l/p
∥∥el − ẽl

∥∥
�p(Zd)

)
for some C > 0. (7.1)

Analogously, we get a stability theorem in Besov space Bs
p,q(R

d).

8. (A, I)-Compatible nonlinear prediction operators

Given families of multi-indices I and of vectors A, we define: �A I = {�i1
a1 · · ·�ip

ap , ak ∈ A, ik ∈ I}. In other words, �A I is
a difference operator computed with respect to the family of vectors A and orders given by I . Then, we have the definition
of (A, I)-compatible nonlinear prediction operator:

Definition 8.1. A nonlinear prediction operator S is called (A, I)-compatible if there exists a local linear prediction operator
Sl and if it satisfies

S v Mk+i = Sl v Mk+i + Φi
(
�A I vk+p1 , . . . ,�

A I vk+pq

) ∀i ∈ coset(M)

where {p1, . . . , pq} is a fix set, Φi are bounded Lipschitz functions and if there exists an operator S A I
l satisfying: �A I Sl v =

S A I
l �A I v.

From its definition, the operator S admits an operator S A I . We also remark that Lipschitz-Linear operators of order N + 1
are (A, I)-compatible with I = {i; |i| = N + 1} and A = {e1, . . . , ed}. Note that we can extend all the notions described in
the previous sections for Lipschitz-Linear prediction operators to (A, I)-compatible prediction operators. The interest of using
the notion of (A, I)-compatibility is to provide simpler proofs of convergence and stability, as illustrated in the next section.
Indeed, the (A, I)-compatibility enables to significantly reduce the number of computed differences to prove convergence
and stability.

9. Applications

We study the convergence of bidimensional PPH multiscale representations with prediction operator. We modify the

PPH scheme as follows v̂ j
Mk+e1

= v j−1
k +v j−1

k+Me1
2 − ω

8 H(�2
Me1

v j−1
k ,�2

Me1
v j−1

k−Me1
) and v̂ j

Mk = v j−1
k , for some 0 < ω < 1. This

prediction operator is Lipschitz-Linear, we also notice that it is (A, I)-compatible with A = {e1, Me1} and I = {(0,2), (2,0)},
where M is the quincunx matrix. Therefore, to prove the convergence we only study the joint spectral radius of S A I . To
this end, we first compute the differences of order 2 in the directions {e1, Me1}. We then compute an upper bound for
ρp(S A I ). Doing so, we are able to prove that the associated multiscale representation is bounded in L∞ as soon as ω < 1,
and convergent in L p for any p � 1 and ω = 1. Using some properties of the Lipschitz function H , we are also able to prove
the stability as soon as p � 1 and ω < 1/2.
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