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We give an analytical parametrization of the curves of purely imaginary eigenvalues in
the delay-parameter plane of the linearized neural field network equations with space-
dependent delays. In order to determine if the rightmost eigenvalue is purely imaginary,
we have to compute a finite number of such curves; the number of curves is bounded by a
constant for which we give an expression. The Hopf bifurcation curve lies on these curves.
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r é s u m é

Dans ce compte-rendu, on donne une paramètrisation des courbes de valeurs propres
imaginaires pures, dans le plan des paramètres décrivant le terme des retards, pour les
équation linéarisées des champs neuronaux avec retards dépendant de l’espace. Afin de
savoir si la valeur propre de plus grande partie réelle, est imaginaire pure, on doit calculer
un nombre n de ces courbes, n étant borné par une constante que l’on fournit. La courbe
de bifurcation de Hopf est incluse dans le graphe de ces courbes.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this Note, we consider neural fields (see [9,1]), which are continuous assemblies of mesoscopic models of neural
populations that are essential in the modeling of macroscopic parts of the cortex. They play an important role in the design
of such models of the visual cortex as those proposed by Bressloff [2]. Neural fields describe the mean voltage potential
V i(r) of a population i ∈ [1, p] located at r ∈ Ω , an open bounded set of R

d , by nonlinear integrodifferential equations.
More specifically, the model features an exponential decay e−lt , connections among populations (the integral term) and an
external current Iext

i (r) representing the input from other cortical areas.⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
d

dt
+ l

)
V i(t, r) =

p∑
j=1

∫
Ω

J i j(r, r̄)S
[
V j

(
t − τ (r, r̄), r̄

)]
dr̄ + Iext

i (r, t), t � 0, 1 � i � p

V i(t, r) = φi(t, r), t ∈ [−T ,0], T = max
r,r̄∈Ω̄

τ (r, r̄) (initial condition)

(1)
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The connectivity function J i j(r, r̄) is in L2(Ω2,R
p×p) and the nonlinearity S , of sigmoidal shape, describe the relation-

ship between firing rate and membrane potential. There are, at least, two types of delays that need to be taken into account.
A constant delay D which corresponds to the synaptic integration time and the propagation delays due to the time taken to
travel information along axons. The propagation delay function has recently been measured in feline cortical tissue (see [4]),
leading to the following analytical form τ (r, r̄) = D + c‖r − r̄‖2 where c = v−1, v being the propagation speed. Propaga-
tion delays are an essential building block for modeling the visual cortex: indeed, because of long range connections, it is
strongly believed that they shape the spatiotemporal dynamics of the cortical activity. The relative role of constant delays
versus space-dependent delays is currently unknown. There are several papers (see, for example, [3,8]) which study the
effects of propagation delays but the linear stability analysis is mainly numerical and somewhat long-winded. Numerical
computations involving delay differential equations are very time consuming, therefore, it is difficult to experiment on how
the connectivity shapes the dynamics in conjunction with the delays. This is why we believe that our explicit parametriza-
tion of the Hopf curve is a major step toward an understanding of the neural fields equations but also of delayed systems
in general.

Let us consider a stationary point of (1) written V f : we are interested in its linear stability. V f is asymptotically stable
iff the characteristic values λ ∈ C, solutions of the characteristic equation (2), have a negative real part (see, for example,
[6]):

(λ + l)Ui(r) =
p∑

j=1

∫
Ω

J i j(r, r̄)e−λτ(r,r̄)D S
[
V f

j (r̄)
]
U j(r̄)dr̄, 1 � i � p (2)

for some Ui(r). We are interested in pairs (D, c) for which the rightmost characteristic value is purely imaginary. We
suppose that V f is asymptotically stable when there is no delay, i.e. when c = D = 0. If the propagation speed is infinite
c = 0, an analytical formula for the characteristic values can be found. Indeed, in this case, Eq. (2) reduces to λ+ l = e−λD Jn ,
where Jn is in the point spectrum of the integral operator with kernel J i j(r, r̄)D S[V f

j (r̄)]. This equation is solved using the

different branches Wk of the Lambert1 function (see [5]) by:

λk,n = 1

D
Wk

(
DelD Jn

) − l, k ∈ Z, n ∈ N (3)

2. Main result

We use the previous equation (3) to find the pairs (D, c) for which the rightmost characteristic value is purely imaginary
iω, ω > 0. The next theorem gives a parametrization of these pairs on a bounded set E :

Theorem 2.1. Let us consider a stationary solution V f and write J the integral operator of kernel Jqr(r, r̄)D S[V f
r (r̄)]. Sup-

pose that the spectrum of −l · Id + J has negative real part. Consider the integral operator J (z) whose kernel is given by

Jqr(r, r̄)D S(V f
r (r̄))e−z|r−r̄|2 , z ∈ C. J (iy), y > 0 is a Hilbert–Schmidt operator on L2(Ω,C

p). We consider its spectrum Σ[ J (iy)]
ordered by decreasing modulus: | J0(iy)| � | J1(iy)| · · · . Then:

1. The solutions (iω, D, c) of the characteristic equation iω + l = e−iωD Jn(icω) are parametrized by the curve Cn:

Cn:

[
il
√∣∣ Jn(iy)/l

∣∣2 − 1, Dn(y),
y

l
√| Jn(iy)/l|2 − 1

]
, iy ∈ En

where Dn(y) = 1√
| Jn(iy)/l|2−1

(|arg( Jn(iy))| − arccos( l
| Jn(iy)| )) and

iy ∈ En =
{

iy ∈ iR+
∣∣∣ � Jn(iy) > 0, l � | Jn(iy)| and arccos

(
l

| Jn(iy)|
)

�
∣∣arg

(
Jn(iy)

)∣∣}

2. If we look for solutions (iω, D, c) with c � c∞ , then the sets Sn are bounded by y � c∞‖ J (0)‖2 .
3. The set En is empty if nl > ‖ J (0)‖2

2 . Hence, there are at most �‖ J (0)‖2
2/l� curves Cn.

Proof. We first quote a result (see [7]): if we write BC = {z ∈ C, 	z � −e−1, �z = 0}, then:⎧⎨
⎩

max
k

	Wk(z) = 	W0(z), z /∈ BC

max
k

	Wk(z) = 	W0(z) = 	W−1(z), z ∈ BC

1 It is the multivariate function W such that W (z)eW (z) = z.
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Fig. 1. Plot of the curves Cn for n = 0,1,2,3, in the plane (c, D).

In the latter case, there are two rightmost roots corresponding to W0 and W1, one of which serves as the criti-
cal root for stability. We solve the characteristic equation λ + l = e−λD Jn(cλ) with the help of the Lambert function:

λk,n = 1
D Wk[DelD Jn(cλk,n)] − l = l(

Wk[DelD Jn(cλk,n)]
lD − 1).

1. According to (2), the rightmost characteristic corresponds to k = 0. We look for conditions such that λ0,n is purely

imaginary. Write X = lD , then λ0,n = l(
W0[X Jn(cλk,n)/l]

W0(X)
− 1). For a given iy ∈ En = {iy ∈ iR+ | � Jn(iy) > 0, l �

| Jn(iy)| and arccos( l
| Jn(iy)| ) � |arg( Jn(iy))|}, there is a unique X0(y) = W0(lD(y)) such that W0(X0(y)) =

	W0(X0(y) Jn(y)) (see Appendix A). Then 1
D(y)

W0(lD(y)elD(y) Jn(y)) − l = iz ∈ iR+ where z = l
√| Jn(iy)/l|2 − 1. Then

choose c = y/z > 0: it gives a solution (y, D(y), y/z) to the characteristic equation parametrized by y, iy ∈ En .
2. If iy ∈ En , we can find a solution (iω, D, c) of the characteristic equation and y = cω. It remains to show that |ω| �

‖ J (0)‖2. We have iω + l = e−iωD Jn(icω), hence: |ω| = |�(e−iωD Jn(icω))| � |e−iωD Jn(icω)| = | Jn(icω)| � ‖ J (icω)‖2 �
‖ J (0)‖2.

3. As J (z) is a Hilbert–Schmidt operator, we have
∑∞

q=0 | Jq(z)|2 � ‖ J (z)‖2
2. It gives q| Jq(z)|2 � ‖ J (z)‖2

2 � ‖ J (	z)‖2
2. If

‖ J (0)‖2
2 < n, then

‖ J (0)‖2
2

n < 1 and | Jn(iy)|2 � ‖ J (0)‖2
2

n < 1 for all y ∈ R which implies that En = ∅. �
3. Numerical analysis

From this theorem, if we want to compute the curves for c � c∞ , we need to compute the eigenvalues Jn(y) for y �
c∞‖ J (0)‖2 and n � ‖ J (0)‖2. Notice that the computation of the Hopf bifurcation curve requires to find the eigenvalues
of a matrix of size (Nt NΩ)2, (Nt points in [−T ,0], NΩ points in Ω) and we have to look for the bifurcation curve in
the parameter plane. The computation of the eigenvalues of J (iy) for a given y requires to find the eigenvalues of a
matrix of size (NΩ)2 and, with our formulas, we directly have the bifurcation curve. We give a numerical example when
S(x) = 1

1+e−x − 1
2 , Ω = (−π

2 , π
2 ), J (x, x′) = −(0.5 + 2.1 cos(2x − 2x′)] 2

π and l = 1. Fig. 1 is a plot of the curves Cn for
n = 0, . . . ,3. Notice that C0 and C1 have an intersection point (DFH, cFH), there are two rightmost characteristic values
which are purely imaginary, leading to a Hopf–Hopf bifurcation if certain non-degeneracy conditions are satisfied.
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Appendix A. Technical lemma

Lemma A.1. If J = | J |eiψ , ψ ∈ (−π,π ], there is a (unique) solution X0 > 0 to 	W0( J X) = W0(X) iff 1 � | J | and arccos( 1
| J | ) � |ψ |.

This solution is given by X0 = ξ0eξ0 with ξ0 = 1√
2

(|ψ | − arccos( 1
| J | )). Then �W0( J X0)

W0(X)
= sign(ψ)√

2
.
| J | −1 | J | −1
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Proof. Let us define H(z) = zez , by definition H(W0(z)) = z, hence the equation becomes H(	W0( J X)) = X > 0. We
write W0( J X) = ξ + iη with η ∈ (−π,π ] (by definition of the principal branch) and J X = | J |Xeiψ, ψ ∈ (−π,π ]. As
sign(�(W0(z))) = sign(arg z) (see [5]), we find that sign(ψ) = sign(η). From the symmetry W0(z) = W0(z̄), we conclude that
η(ψ) can be written sign(ψ)η(|ψ |): we can suppose that ψ � 0 and thus that η � 0. By definition of W0, J X = H(ξ + iη),
it gives:{

| J |X cos(ψ) = eξ
(
ξ cos(η) − η sin(η)

)
| J |X sin(ψ) = eξ

(
ξ sin(η) + η cos(η)

)
Using ξeξ = X , we find (

η
ξ
)2 = | J |2 − 1 ⇒ η

ξ
= √| J |2 − 1 and the two equations reduce to

ei(ψ−η) = 1

| J |
[
1 + i

√
| J |2 − 1

] = eiφ, φ = arccos

(
1

| J |
)

∈
[

0,
π

2

]

This gives η = ψ − φ [2π ]. If ψ − φ � 0, then we have a solution η = ψ − φ. However, if ψ − φ < 0, the only potential
solution is η = ψ − φ + 2π , but ψ − φ + 2π � −π

2 + 2π > π but η � π . Hence there is a (unique) solution iff ψ − φ � 0

which is η = ψ − φ. In this case ξ = ψ−arccos( 1
| J | )√

| J |2−1
. �
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