
C. R. Acad. Sci. Paris, Ser. I 349 (2011) 719–724
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Number Theory

Eisenstein cohomology and ratios of critical values of Rankin–Selberg
L-functions

Cohomologie d’Eisenstein et rapports de valeurs critiques des fonctions L
de Rankin–Selberg

Günter Harder a, A. Raghuram b,1

a Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
b Department of Mathematics, Oklahoma State University, 401 Mathematical Sciences, Stillwater, OK 74078, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 May 2011
Accepted after revision 10 June 2011
Available online 13 July 2011

Presented by Jean-Pierre Serre

This is an announcement of results on rank-one Eisenstein cohomology of GLN , with N � 3
an odd integer, and algebraicity theorems for ratios of successive critical values of certain
Rankin–Selberg L-functions for GLn × GLn′ when n is even and n′ is odd

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Cette Note annonce des résultats sur la cohomologie d’Eisenstein de rang 1 de GLN , avec
N � 3 un entier impair, et donne des théorèmes d’algébricité pour les rapports de valeurs
critiques successives de certaines fonctions L de Rankin–Selberg pour GLn × GLn′ lorsque n
est pair et n′ est impair.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Soit σ f ∈ Coh(GLn, λ), ce qui signifie que σ f est un GLn(A f )-facteur de la cohomologie intérieure H•
! (SGLn

K f
, Eλ) d’un es-

pace SGLn
K f

:= GLn(Q)\GLn(A)/K ◦∞ K f à coefficients dans le faisceau Eλ provenant d’une représentation irréductible algébrique

de plus haut poids λ, cf. Section 1. Quand n est pair et λ est régulier, un tel σ f apparaît deux fois dans H•
! (SGLn

K f
, Eλ) pour

• = n2/4. En comparant ces deux copies de σ f , on en déduit une période Ωε(σ f , ι) ∈ C× , où ι est un plongement du corps
de rationalité de σ f dans la clôture algébrique de Q dans C, cf. définition 2.1.

Soit maintenant σ ′
f ∈ Coh(GLn′ , λ′) pour un entier impair n′ . Posons N = n + n′ . Soit m ∈ 1

2 + Z tel que m et m + 1 soient
critiques pour la fonction L de Rankin–Selberg L(σ f × σ ′ v

f , ι, s). En supposant la validité d’un certain lemme combinatoire
(voir Conjecture 5.1) notre résultat principal sur les valeurs critiques affirme que

1

Ω(σ f , ι)
εmεσ ′

Λ(σ f × σ ′ v
f , ι,m)

Λ(σ f × σ ′ v
f , ι,m + 1)
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est algébrique et Galois-équivariant, cf. Théorème 4.1. Ici Λ(σ f × σ ′v
f , ι, s) est la fonction L complétée.

Le Théorème 4.1 se démontre en étudiant l’image (appelée « cohomologie d’Eisenstein ») de la cohomologie globale
H•(SGLN , Eμ̃) dans la cohomologie H•(∂ SGLN , Eμ̃) de la frontière de Borel–Serre ∂ SGLN de SGLN . Nous étudions en parti-
culier ceci pour la cohomologie en degré • = (N2 − 1)/4 et pour un plus haut poids μ̃ qui dépend des poids λ et λ′ via le
lemme combinatoire. Le Théorème 5.2 donne une caractérisation de cette image.

1. The general situation

Let G/Q be a connected split reductive algebraic group over Q whose derived group G(1)/Q is simply connected. Let
Z/Q be the center of G and let S be the maximal Q-split torus in Z . Let C∞ be a maximal compact subgroup of G(R) and
let K∞ = C∞ S(R)◦ . The connected component of the identity of K∞ is denoted K ◦∞ and K∞/K ◦∞ = π0(K∞)

∼−→ π0(G(R)).
Let K f = ∏

p K p ⊂ G(A f ) be an open compact subgroup; here A is the adèle ring of Q and A f is the ring of finite adèles.
The locally symmetric space of G with level structure K f is defined as

SG
K f

:= G(Q)\G(A)/K ◦∞K f .

(For the following see Harder [6, Chapter 3, Sections 2, 2.1, 2.2] for details.) For a dominant integral weight λ, let Eλ be
an absolutely irreducible finite-dimensional representation of G/Q with highest weight λ, and let Eλ denote the associated
sheaf on SG

K f
. We have an action of the Hecke-algebra H = HG

K f
= ⊗′

p H p on the cohomology groups H•(SG
K f

, Eλ).

We always fix a level, but sometimes drop it in the notation. For any finite extension F/Q, let Eλ,F = Eλ ⊗Q F , then Eλ,F
is the corresponding sheaf on SG

K f
.

Let S̄G
K f

be the Borel–Serre compactification of SG
K f

, i.e., S̄G
K f

= SG
K f

∪ ∂ S̄G
K f

, where the boundary is stratified as ∂ S̄G
K f

=⋃
P ∂P SG

K f
with P running through the conjugacy classes of proper parabolic subgroups defined over Q. The sheaf Eλ,F on

SG
K f

naturally extends, using the definition of the Borel–Serre compactification, to a sheaf on S̄G
K f

which we also denote by

Eλ,F . Restriction from S̄G
K f

to SG
K f

in cohomology induces an isomorphism Hi( S̄G , Eλ)
∼−→ Hi(SG , Eλ).

Our basic object of interest is the following long exact sequence of π0(K∞) × H-modules

· · · −→ Hi
c

(
SG , Eλ

) ι∗−→ Hi( S̄G , Eλ

) r∗−→ Hi(∂ S̄G , Eλ

) −→ Hi+1
c

(
SG , Eλ

) −→ · · · .
The image of cohomology with compact supports inside the full cohomology is called inner or interior cohomology and is
denoted H•

! := Image(ι∗) = Im(H•
c → H•). The theory of Eisenstein cohomology is designed to describe the image of the

restriction map r∗ . Our goal is to study the arithmetic information contained in the above exact sequence.
The inner cohomology is a semi-simple module for the Hecke-algebra. (See Harder [6, Chap. 3, 3.3.5].) After a suitable

finite extension F/Q, where Q ⊂ F ⊂ Q̄ ⊂ C, we have an isotypical decomposition

Hi
!
(

SG
K f

, Eλ,F
) =

⊕
π f ∈Coh(G,K f ,λ)

Hi
!
(

SG
K f

, Eλ,F
)
(π f )

where π f is an isomorphism type of an absolutely irreducible H-module, i.e., an F -vector space Hπ f with an absolutely
irreducible action of H. The local factors H p are commutative outside a finite set V = V K f of primes and the factors H p and
Hq , for p �= q, commute with each other. Hence for p /∈ V the commutative algebra H p acts on Hπ f by a homomorphism
πp : H p → F . Let Hπp be the one dimensional vector space F with basis 1 ∈ F with the action πp on it. Then Hπ f =⊗

p∈V Hπp

⊗′
p /∈V Hπp = ⊗′

p Hπp . The set of isomorphism classes which occur in the above decomposition is called the

‘spectrum’ Coh(G, K f , λ). If we restrict the elements of the Galois group Gal(Q̄/Q) to F we get the conjugate embeddings
of F into Q̄; we introduce I(F ) = {ι : F → C} = {ι : F → Q̄}. For ι ∈ I(F ) define ι ◦ π f as Hπ f ⊗F ,ι C. We define the
rationality field of π f as Q(π f ) = {x ∈ F | ι(x) = ι′(x) if ι ◦ π f = ι′ ◦ π f }.

2. The case of GLn and the definition of relative periods when n is even

Let T /Q be a maximal Q-split torus in G , let T (1) = T ∩ G(1) . Let X∗(T ) be its group of characters then restriction
of characters gives an inclusion X∗(T ) ⊂ X∗(T (1)) ⊕ X∗(Z) and after tensoring by Q this becomes an isomorphism. Any
λ ∈ X∗(T ) can be written as λ(1) + δ,λ(1) ∈ X∗(T (1)) ⊗ Q =: X∗

Q
(T (1)), δ ∈ X∗

Q
(Z).

Consider the case G = GLn/Q. Take a regular essentially self-dual dominant integral highest weight λ. Let ρ ∈ X∗
Q
(T (1))

be half the sum of positive roots, and write λ + ρ = a1γ1 + · · · + an−1γn−1 + d · det, which is an equation in X∗
Q
(T ); the

γi ∈ X∗
Q
(T ) restrict to the fundamental weights in X∗(T (1)) and are trivial on the center Z . Regular, dominant and integral

mean that ai � 2 are integers, and essentially self-dual means ai = an−i . Further, for such a weight λ we have 2d ∈ Z and it
satisfies the parity condition:

2d ≡ w + n − 1 (mod 2) (1)

where w = w(λ) := ∑
i ai is the ‘motivic weight’; see below.
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Given such a λ, there is a unique essentially unitary Harish-Chandra module Hπλ∞ such that the relative Lie algebra

cohomology group H•(g, K ◦∞, Hπλ∞ ⊗ Eλ) �= 0. Let L2
d(G(Q)\G(A)/K f ,ω

−1
Eλ

) denote the discrete spectrum for G(A) in the

space of L2-automorphic forms with level structure K f on which Z(R)◦ acts via the inverse of the central character of Eλ .
For π f ∈ Coh(G, K f , λ) and ι ∈ I(F ) we consider

W
(
πλ∞ ⊗ ι ◦ π f

) = Hom(g,K ◦∞)×HG
K f

(
Hπλ∞ ⊗ (Hπ f ⊗F ,ι C), L2

d

(
G(Q)\G(A)/K f ,ω

−1
Eλ

))
which is one-dimensional due to multiplicity-one for the discrete spectrum of GLn; the image is in fact in the cuspidal
spectrum by regularity of λ. (See, for example, Schwermer [11, Corollary 2.3].) We choose a generator Φ for W (πλ∞ × ι◦π f ).

The summand H•
! (SG

K f
, Eλ,F )(π f ) can be decomposed for the action of π0(G(R)) = Z/2Z as

H•
!
(

SG
K f

, Eλ,F
)
(π f ) =

⊕
ε:π0(G(R))→Z/2Z

H•
!
(

SG
K f

, Eλ,F
)
(π f )(ε).

The action of π0(G(R)) = π0(K∞) = K∞/K ◦∞ is via its action on H•(g, K ◦∞, Hπλ∞ ⊗ Eλ). (See, for example, Borel and Wallach
[1, I.5].) Therefore, we get⊕

ε

W
(
πλ∞ ⊗ ι ◦ π f

) ⊗ H•(g, K ◦∞, Hπλ∞ ⊗ Eλ

)
(ε) ⊗ Hπ f ⊗F ,ι C →

⊕
ε

H•
!
(

SG
K f

, Eλ,F
)
(π f ) ⊗F ,ι C(ε).

Let bn = n2/4 if n is even, and (n2 − 1)/4 if n is odd. Since π is cuspidal, it is well known (see, for example, Clozel [2]) that
πλ∞ is irreducibly induced from essentially discrete series representations and that

Hbn
(
g, K ◦∞, Hπλ∞ ⊗ Eλ

) =
{

Hbn(g, K ◦∞, Hπλ∞ ⊗ Eλ)+ ⊕ Hbn(g, K ◦∞, Hπλ∞ ⊗ Eλ)− if n is even;
Hbn(g, K ◦∞, Hπλ∞ ⊗ Eλ)ε if n is odd,

where each piece on the right-hand side is one-dimensional, and ε is a canonical sign (see [10, Section 3.3]).
Now let n be even. We will define certain periods that we call relative periods. We define consistent choices of generators

ω+ ∈ HomK ◦∞
(
Λbn(g/k), Hπλ∞ ⊗ Eλ

)
+, ω− ∈ HomK ◦∞

(
Λbn(g/k), Hπλ∞ ⊗ Eλ

)
−,

from which we get isomorphisms

(Φ ⊗ ω±) : ι ◦ π f → Hbn
!

(
SG

K f
, Eλ,F

)
(π f )± ⊗F ,ι C.

Composing the inverse of one with the other gives a canonical transcendental isomorphism

T trans(π f , ι) = (Φ ⊗ ω−) ◦ (Φ ⊗ ω+)−1 : Hbn
!

(
SG

K f
, Eλ,F

)
(π f )+ ⊗F ,ι C → Hbn

!
(

SG
K f

, Eλ,F
)
(π f )− ⊗F ,ι C. (2)

This isomorphism does not depend on the choice of Φ or the pair (ω+,ω−) because these are unique up to scalars which
cancel out. On the other hand, we have an arithmetic isomorphism of HG

K f
-modules

T arith(π f ) : Hbn
!

(
SG

K f
, Eλ,F

)
(π f )+ → Hbn

!
(

SG
K f

, Eλ,F
)
(π f )− (3)

which is unique up to an element in Q(π f )
× . Comparing (2) with (3) we get the following definition:

Definition 2.1. There is an array of complex numbers Ω(π f ) = (. . . ,Ω(π f , ι), . . .)ι∈I(F ) defined by

Ω(π f , ι)T trans(π f , ι) = T arith(π f ) ⊗F ,ι C.

Changing T arith(π f ) by an element a ∈ Q(π f )
× changes the array into (. . . ,Ω(π f , ι)ι(a), . . .)ι:F→C .

If we pass from λ to λ − l · det for an integer l, then we have a canonical isomorphism

H•
!
(

SG
K f

, Eλ,F
)
(π f ) → H•

!
(

SG
K f

, Eλ−l·det,F
)(

π f ⊗ | |l)
under which the ± components are switched by (−1)l . We get the following period relation:

Ω(π f , ι) = Ω
(
π f ⊗ | |l, ι)(−1)l

. (4)
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Remark 1. Since cuspidal automorphic representations of GLn are globally generic we can also define periods by comparing
rational structures on Whittaker models and cohomological realizations. The periods were denoted p±(π f ) in Raghuram
and Shahidi [10] and they appear in algebraicity results for the central critical value of Rankin–Selberg L-functions for
GLn × GLn−1; see Raghuram [9, Theorem 1.1]. The periods p±(π f ) depend on a choice of a nontrivial character of Q\A

which is implicit in any discussion concerning Whittaker models. However, one may check that if we change this character
then the period changes only by an element of Q(π f )

× . Further, it is an easy exercise to see that Ω(π f ) = p+(π f )/p−(π f )

up to elements in Q(π f )
× . On the other hand, the definition of the relative periods Ω(π f ) does not require Whittaker

models suggesting that it is far more intrinsic to the representation viewed as a Hecke-summand of global cohomology.

3. The case G = GLn × GLn′ with n even and n′ odd

Let σ f ∈ Coh(GLn, λ) and σ ′
f ∈ Coh(GLn′ , λ′). The level structures will be suppressed from our notation from now on. As

before, the weights are written as λ + ρ = a1γ1 + · · · + an−1γn−1 + d · det, and similarly λ′ + ρ ′ = a′
1γ

′
1 + · · · + a′

n′−1γ
′

n′−1 +
d′ · det′ , where ai = an−i , a′

i = a′
n′−i , and again we assume regularity for both the weights. Let G = GLn × GLn′ , μ = λ + λ′

and π f = σ f × σ ′
f . By the Künneth formula we get

H•
!
(

SG , Eμ,F
)
(π f ) = H•

!
(

SGLn , Eλ′,F
)
(σ f ) ⊗ H•

!
(

SGLn , Eλ′,F
)(

σ ′
f

)
.

Using Grothendieck’s conjectural theory of motives, one supposes that there are motives Meff (resp., M′
eff) that are

conjecturally attached to σ f (resp., σ ′
f ). (See, for example, [7].) We call a pair of integers (p,q) a Hodge-pair for a

motive M if the Hodge number hp,q(M) �= 0. The Hodge-pairs of the motives Meff (resp., M′
eff) are expected to be

{(w,0), (w − a1,a1), . . . , (0,w)} (resp., {(w′,0), (w′ − a′
1,a′

1), . . . , (0,w′)}) where w = ∑n−1
i=1 ai (resp., w′ = ∑n′−1

i′=1 a′
i′ ) are

the motivic weights. The motives Meff (resp., M′
eff) are suitable Tate-twists of the motives expected to be attached to σ f

(resp., σ ′
f ) as in Clozel [2, Conjecture 4.5]. The assertion about Hodge pairs may be verified by working with the represen-

tations at infinity and their associated local L-factors which determine the Γ -factors at infinity. The set of Hodge-pairs for
Meff ⊗ M′

eff are all the pairs of the form (w − a1 . . . − as + w′ − a′
1 . . . − a′

s′ ,a1 + · · · + as + a′
1 + · · · + a′

s′ ).
The motivic L-function L(Meff ⊗ M′

eff, ι, s) is defined as in Deligne [3, (1.2.2)]. Intimately related to it is a ‘cohomolog-
ical’ L-function Lcoh(σ f × σ ′

f , ι, s) which is defined as an Euler product, where each Euler factor is expressed in terms of
eigenvalues of certain normalized Hecke-operators acting on integral cohomology groups. Assume that the middle Hodge
number of Meff ⊗ M′

eff is zero, i.e., h(w+w′)/2,(w+w′)/2 = 0. Put p(μ) := min{p | w + w′ � p > (w + w′)/2, hp,w+w′−p �= 0}. Let
σ ′ v denote the contragredient of σ ′ . The critical points of Lcoh(σ f × σ ′ v

f , ι, s) are the integers{
p(μ), p(μ) − 1, . . . ,w + w′ + 1 − p(μ)

}
. (5)

Note that this decreasing list of integers is centered around (w + w′ + 1)/2 which is the center of symmetry of the cohomo-
logical L-function. The total number of critical integers is 2p(μ) − (w + w′). The cohomological L-function is up to a shift
in the s-variable the usual automorphic Rankin–Selberg L-function L(σ f × σ ′ v

f , ι, s) := L((ι ◦ σ f ) × (ι ◦ σ ′ v
f ), s) for which the

functional equation is between s and 1 − s. More precisely, we have

Lcoh(
σ f × σ ′ v

f , ι, s
) = L

(
σ f × σ ′ v

f , ι, s − (w + w′)
2

+ a(μ)

)
(6)

where a(μ) = d − d′ . The parity condition (1) when applied to both the weights λ and λ′ implies that the shift − (w+w′)
2 +

a(μ) in the s-variable is always a half-integer. Observe that the cohomological L-function is invariant under changing σ to
σ ⊗ | |l or σ ′ to σ ′ ⊗ | |l′ .

A celebrated conjecture of Deligne predicts the existence of two periods Ω±(Meff ⊗ M′
eff) obtained from the Betti and

de Rham realizations of this motive that capture, up to prescribable powers of (2π i), the possibly transcendental parts of
the critical values of L(Meff ⊗ M′

eff, ι, s). See [3, Conjecture 2.7, (3.1.2) and (5.1.8)] for a precise statement. Our main result
on L-values is to be viewed from this perspective.

4. The main result on ratios of critical L-values

Theorem 4.1. Let σ f ∈ Coh(GLn, λ) and σ ′
f ∈ Coh(GLn′ , λ′). Assume that n is even and n′ is odd. Let m = 1/2 + m0 ∈ 1/2 + Z be a

half-integer such that both m and m + 1 are critical for L(σ f ×σ ′ v
f , ι, s). Assuming the validity of a Combinatorial Lemma (see below)

we have

1

Ω(σ f , ι)
εmεσ ′

Λ(σ f × σ ′ v
f , ι,m)

Λ(σ f × σ ′ v
f , ι,m + 1)

∈ ι(F ),

for any ι ∈ I(F ). Moreover, for all τ ∈ Gal(Q̄/Q)
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τ

(
1

Ω(σ f , ι)
εmεσ ′

Λ(σ f × σ ′ v
f , ι,m)

Λ(σ f × σ ′ v
f , ι,m + 1)

)
= 1

Ω(σ f , τ (ι))εmεσ ′
Λ(σ f × σ ′ v

f , τ (ι),m)

Λ(σ f × σ ′ v
f , τ (ι),m + 1)

.

Here εσ ′ is a sign determined by σ ′ , εm = (−1)m0 and Λ(σ f × σ ′ v
f , ι, s) is the completed Rankin–Selberg L-function.

See the main theorem of Harder [4] for the simplest nontrivial case (n = 2 and n′ = 1) of the above theorem.

5. Eisenstein cohomology and sketch of proof of Theorem 4.1

Consider the group G̃ = GLN/Q where N = n + n′ � 3 is an odd integer. Let P (resp., Q ) be the standard maximal
parabolic subgroup of G̃ whose Levi quotient is M P = GLn × GLn′ (resp., M Q = GLn′ × GLn). We will try to find a high-

est weight μ̃, such that H
bn+bn′
! (S M P , Eμ,F )(σ f ⊗ σ ′

f ) ⊕ H
bn+bn′
! (S M Q , Eμ,F )(σ ′

f ⊗ σ f ) occurs as isotypical summand in the

cohomology of the boundary HbN (∂ SG̃
K f

, Eμ̃). Recall our notation that bN = (N2 − 1)/4, hence bN = bn + bn′ + dim(U P )/2.

Therefore, we need a dominant weight μ̃ and a Kostant representative w ∈ W P (defined as in Borel and Wallach [1, III.1.2])
of length l(w) = dim(U P )/2 such that w · μ̃ := w(μ̃+ ρ̃) − ρ̃ = μ = λ + λ′ . We believe, having checked it in infinitely many
cases (n = 2 or n′ = 1), that the following assertion is true:

Conjecture 5.1 (Combinatorial Lemma). For a given μ = λ + λ′ , there exists a dominant weight μ̃ and a Kostant representative
w ∈ W P with l(w) = dim(U P )/2 and w · μ̃ = μ if and only if

(w + w′)
2

− p(μ) + 1 − N

2
� a(μ) � − (w + w′)

2
+ p(μ) − 1 − N

2
.

(The number of possibilities for a(μ) is 2p(μ) − (w + w′) − 1, which is one less than the total number of critical points.)

Assuming that μ satisfies the condition in the Combinatorial Lemma, we know that there is a μ̃ such that

H
bn+bn′
!

(
S M P , Eμ,F

)(
σ f ⊗ σ ′

f

) ⊕ H
bn+bn′
!

(
S M Q , Eμ,F

)(
σ ′

f ⊗ σ f
) ⊂ HbN

(
∂ SG̃ , Eμ̃

)
,

and it is actually an isotypical subspace. Hence, there is a Hecke-invariant projector Rπ f to this subspace. The theory of
Eisenstein cohomology gives a description of the image of the restriction map

r∗ : HbN
(

SG̃ , Eμ̃

) → HbN
(
∂ SG̃ , Eμ̃

)
.

Our main result on Eisenstein cohomology is the following:

Theorem 5.2. The image of Rπ f ◦ r∗ is given by

Rπ f ◦ r∗(HbN
(

SG̃ , Eμ̃

))⊗
F ,ι

⊗C =
{
ψ + C(μ)

Ω(σ f , ι)
εν0 εσ ′

Λcoh(σ f × σ ′ v
f , ι, ν0)

Λcoh(σ f × σ ′ v
f , ι, ν0 + 1)

T arith(π f , ι)(ψ)

}
,

where ψ is any class in H
bn+bn′
! (S M P , Eμ,F )(π f ) with π f = σ f ⊗σ ′

f ; the operator T arith(π f , ι) is defined as T arith(σ f , ι)⊗ 1σ ′
f

after

using the Künneth-formula; C(μ) is a non-zero rational number; and the point of evaluation is ν0 = w+w′
2 − a(μ) − N

2 . (Note that

Λcoh(σ f × σ ′ v
f , ι, ν0) = Λ(σ f × σ ′ v

f , ι,−N/2).)

Theorem 5.2 implies the rationality result stated in Theorem 4.1 for m = −N/2 because the ratio of L-values together
with the period is the ‘slope’ of a rationally defined map. For an integer l, let us change σ to σ ⊗ | |l , then λ changes to
λ− l · det and a(μ) changes to a(μ)− l, however the possibilities for l are restricted by the inequalities in the Combinatorial
Lemma since w,w′ and p(μ) do not change. It may be verified using (5) that as a(μ) runs through all the possible values
it can take as prescribed by the Combinatorial Lemma, the pair of numbers ν0 and ν0 + 1 run through all the successive
critical arguments; Theorem 4.1 follows while using the period relations (4) for σ f . The Combinatorial Lemma says that the
theory of Eisenstein cohomology allows one to prove a rationality result for a ratio of successive L-values exactly when both
the L-values are critical. (See also [5].)

The condition on μ imposed by the Combinatorial Lemma has certain strong implications on the situation that underlies
Eisenstein cohomology. First, using Speh’s results (see, for example, [8, Theorem 10b]) on reducibility for induced represen-
tations for GLN (R), one sees that the representation aIndGLN (R)

P∞ (σ λ∞ ⊗ σ ′λ′
∞ ) of GLN (R) obtained by un-normalized parabolic

induction is irreducible. Next, using Shahidi’s results [12] on local factors and the fact that ν0 and ν0 + 1 are critical, we
deduce that the standard intertwining operator A∞ from the above induced representation to the representation similarly
induced from Q ∞ is both holomorphic and nonzero at s = ν0. The choice of bases ω± fixes a basis for the one-dimensional
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space HbN (glN , K ◦∞, aIndGLN (R)
P∞ (σ λ∞ ⊗ σ ′λ′

∞ ) ⊗ Eμ̃). The map induced by A∞ at the level of (glN , K ◦∞)-cohomology is then a
nonzero scalar. This scalar is a power of (2π i) times a rational number C(μ). The power of (2π i) gives the ratio of L-factors
at infinity hence giving us a statement for completed L-functions, and the quantity C(μ) is expected to be a simple number
as was verified for GL3 by Harder [4].
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