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Let G = GLn(Fq), SLn(Fq) or PGLn(Fq), where q is a power of some prime number p, let U
denote a Sylow p-subgroup of G and let R be a commutative ring in which p is invertible.
Let D(U ) denote the derived subgroup of U and let e = 1

|D(U )|
∑

u∈D(U ) u. The aim of this
Note is to prove that the R-algebras RG and eRGe are Morita equivalent (through the
natural functor RG-mod −→ eRGe-mod, M �→ eM).
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r é s u m é

Soit G = GLn(Fq), SLn(Fq) ou PGLn(Fq), où q est une puissance d’un nombre premier p,
soit U un p-sous-groupe de Sylow de G et soit R un anneau commutatif dans lequel p
est inversible. Soit D(U ) le groupe dérivé de U et soit e = 1

|D(U )|
∑

u∈D(U ) u. Le but de cette
Note est de montrer que les R-algèbres RG et eRGe sont Morita équivalentes (à travers le
foncteur naturel RG-mod −→ eRGe-mod, M �→ eM).

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Let n be a non-zero natural number, p a prime number, q a power of p and let Fq denote a finite field with q elements.
Let Gn = SLn(Fq). We denote by Un the group of n × n unipotent upper triangular matrices with coefficients in Fq (so that
Un is a Sylow p-subgroup of Gn). Let D(Un) denote its derived subgroup: then, with N = (n − 1)(n − 2)/2,

D(Un) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 a1 · · · · · · an−2

0 1 0
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . aN
...

. . . 1 0
0 · · · · · · · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣ a1,a2, . . . ,aN ∈ Fq

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

We fix a commutative ring R in which p is invertible and we set

en = 1

|D(Un)|
∑

u∈D(Un)

u ∈ RD(Un).
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Then en is an idempotent of RGn . The aim of this Note is to prove the following result (recall that an idempotent i of a ring
A is called full if A = Ai A):

Theorem 1. If p is invertible in R, then en is a full idempotent of RGn.

Proof. First, let R0 = Z[1/p], let ζ be a primitive p-th root of unity in C and let R̂0 = R0[ζ ]. Let I0 = R0Gnen R0Gn ,
Î0 = R̂0Gnen R̂0Gn and I = RGeRG . Since p is invertible in R , there is a unique morphism of rings R0 → R which extends
to a morphism of rings R0Gn → RGn . So if 1 ∈ I0, then 1 ∈ I. Also, as (1, ζ, . . . , ζ p−2) is an R0-basis of R̂0, it is also an
R0Gn-basis of R̂0Gn . Therefore, if 1 ∈ R̂0Gnen R̂0Gn = R̂0 ⊗R0 (R0GneR0Gn), then 1 ∈ I0. Consequently, in order to prove
Theorem 1, we may (and we shall) work under the following hypothesis:

Hypothesis. From now on, and until the end of this proof, we assume that R = Z[1/p, ζ ].

Now, let Pn denote the subgroup of SLn(Fq) defined by

Pn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

a1

M
...

an−1

0 · · · 0 1

⎞
⎟⎟⎟⎠

∣∣∣ M ∈ SLn−1(Fq) and a1, . . . ,an−1 ∈ Fq

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Then Un ⊂ Pn . We shall prove by induction on n that

en is a full idempotent of R Pn. (Pn)

It is clear that Theorem 1 follows immediately from (Pn).
As e1 = 1 and e2 = 1, it follows that (P1) and (P2) hold. So assume that n � 3 and that (Pn−1) holds. Let In denote the

identity n × n matrix and let

Vn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

a1

In−1
...

an−1

0 · · · 0 1

⎞
⎟⎟⎟⎠

∣∣∣ a1, . . . ,an−1 ∈ Fq

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Then Vn � (F+
q )n−1 and Pn = SLn−1(Fq) � Vn � SLn−1(Fq) � (F+

q )n−1. We set V ′
n = D(Un) ∩ Vn , so that V ′

n � (F+
q )n−2 is

normalized by Pn−1. Then

D(Un) = D(Un−1) � V ′
n.

We now define

fn = 1

|V ′
n|

∑
v∈V ′

n

v,

so that

en = en−1 fn.

By the induction hypothesis, there exist g1, h1, . . . , gl , hl in Pn−1 and r1, . . . , rl in R such that

1 =
l∑

i=1

ri gien−1hi .

Therefore, as Pn−1 normalizes V ′
n , it centralizes fn and so

fn =
(

l∑
i=1

ri gien−1hi

)
fn =

l∑
i=1

ri gien−1 fnhi =
l∑

i=1

ri gienhi .

So fn ∈ R Pnen R Pn .
Let μp denote the subgroup of R× generated by ζ . If χ ∈ Hom(Vn,μp), we define bχ to be the associated primitive

idempotent of R Vn:

bχ = 1

|Vn|
∑

χ(v)−1 v ∈ R Vn.
v∈Vn
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Then, as Vn is an elementary abelian p-group, we get

fn =
∑

χ∈Hom(Vn,μp)

ResVn
V ′

n
χ=1

bχ .

We fix a non-trivial element χ0 ∈ Hom(Vn,μp) whose restriction to V ′
n is trivial. Then

bχ0 = bχ0 fn and b1 = b1 fn,

so b1 and bχ0 belong to R Pnen R Pn .
But SLn−1(Fq) ⊂ Pn has only two orbits for its action on Hom(Vn,μp) (because n − 1 � 2): the orbit of 1 and the orbit

of χ0. Therefore, bχ ∈ R Pnen R Pn for all χ ∈ Hom(Vn,μp). Consequently,

1 =
∑

χ∈Hom(Vn,μp)

bχ ∈ R Pnen R Pn,

as desired. �
Finite reductive groups. Let F be an algebraic closure of Fq , let G be a connected reductive group over F and let F : G → G
be an isogeny such that some power F δ is a Frobenius endomorphism relative to an Fq-structure. We denote by U an
F -stable maximal unipotent subgroup of G (it is the unipotent radical of an F -stable Borel subgroup). Define

e = 1

|D(U)F |
∑

u∈D(U)F

u ∈ RGF .

Theorem 2. Assume that (G, F ) is split of type A. Then e is a full idempotent of RGF .

Proof. If (G, F ) is split of type A, then we may assume that δ = 1. Then there is a morphism of groups π : Gn → GF

such that the image of Un is UF . As D(UF ) = D(U)F in this case, the extension of this morphism to the group algebras
π̂ : RGn → RGF sends en to e. By Theorem 1, the two-sided ideal of RGn generated by en contains 1, so the result follows
by applying π̂ . �
Corollary 3. If (G, F ) is split of type A, then the functors

RGF -mod −→ eRGF e-mod
M �−→ eM

and
RGF e-mod −→ RGF -mod

N �−→ RGF e ⊗eRGF e N

are mutually inverse equivalences of categories. In particular, RGF and eRGF e are Morita equivalent, and RGF e is a progenerator
for RGF .

Proof. This follows from Theorem 2 and, for instance, [3, Example 18.30]. �
Example. Theorem 2 and Corollary 3 can be applied whenever GF = GLn(Fq), SLn(Fq) or PGLn(Fq).

Comments. (1) It is natural to ask whether Theorem 2 (or Corollary 3) can be generalized to other finite reductive groups.
In fact, it cannot: indeed, if for instance R = C, then saying that e is a full idempotent of RGF means that every irreducible
character of GF is an irreducible component of an Harish-Chandra induced of some Gelfand–Graev character. But, if G is
quasi-simple and (G, F ) is not split of type A, then GF admits a unipotent character which does not belong to the principal
series: this character cannot be an irreducible component of an Harish-Chandra induced of a Gelfand–Graev character.

(2) In [1], a crucial step for the proof of a special case of the geometric version of Broué’s abelian defect conjecture was
[1, Theorem 4.1], where R. Rouquier and the author have proved the above Theorem 2 in the case where R is the integral
closure of Z� in a sufficiently large algebraic extension of Q� (here, � is a prime number different from p). The proof was
essentially based on the classification, due to Dipper [2, 4.15 and 5.23], of simple modules for Gn in characteristic �, and
especially of cuspidal ones, which involves the Deligne–Lusztig theory.

The interest of the proof given here is that it does not rely on any classification of simple modules, and is based on
elementary methods: as a by-product of this elementariness, Theorem 2 and Corollary 3 are valid over any commutative
ring (in which p is invertible, which is a necessary condition if one wants the idempotent en to be well-defined).
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