Algebra/Group Theory

A progenerator for representations of $\mathbf{S L}_{n}\left(\mathbb{F}_{q}\right)$ in transverse characteristic

Un progénérateur pour les représentations de $\mathbf{S L}_{n}\left(\mathbb{F}_{q}\right)$ en caractéristique transverse

Cédric Bonnafé

CNRS - UMR 5149, Institut de mathématiques et de modélisation de Montpellier, Université Montpellier 2, place Eugène-Bataillon, 34095 Montpellier cedex, France

A R T I C L E IN F O

Article history:

Received 27 March 2011
Accepted after revision 7 June 2011
Available online 13 July 2011
Presented by the Editorial Board

Abstract

Let $G=\mathbf{G L}_{n}\left(\mathbb{F}_{q}\right), \mathbf{S L}_{n}\left(\mathbb{F}_{q}\right)$ or $\mathbf{P G L}_{n}\left(\mathbb{F}_{q}\right)$, where q is a power of some prime number p, let U denote a Sylow p-subgroup of G and let R be a commutative ring in which p is invertible. Let $\mathrm{D}(U)$ denote the derived subgroup of U and let $e=\frac{1}{|\mathrm{D}(U)|} \sum_{u \in \mathrm{D}(U)} u$. The aim of this Note is to prove that the R-algebras $R G$ and $e R G e$ are Morita equivalent (through the natural functor $R G-\bmod \longrightarrow e R G e-\bmod , M \mapsto e M)$. © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. R É S U M É Soit $G=\mathbf{G L}_{n}\left(\mathbb{F}_{q}\right), \mathbf{S L}_{n}\left(\mathbb{F}_{q}\right)$ ou $\mathbf{P G L}_{n}\left(\mathbb{F}_{q}\right)$, où q est une puissance d'un nombre premier p, soit U un p-sous-groupe de Sylow de G et soit R un anneau commutatif dans lequel p est inversible. Soit $\mathrm{D}(U)$ le groupe dérivé de U et soit $e=\frac{1}{\mathrm{D}(U) \mid} \sum_{u \in \mathrm{D}(U)} u$. Le but de cette Note est de montrer que les R-algèbres $R G$ et $e R G e$ sont Morita équivalentes (à travers le foncteur naturel $R G-\bmod \longrightarrow e R G e-\bmod , M \mapsto e M)$.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Let n be a non-zero natural number, p a prime number, q a power of p and let \mathbb{F}_{q} denote a finite field with q elements. Let $G_{n}=\mathbf{S L}_{n}\left(\mathbb{F}_{q}\right)$. We denote by U_{n} the group of $n \times n$ unipotent upper triangular matrices with coefficients in \mathbb{F}_{q} (so that U_{n} is a Sylow p-subgroup of $\left.G_{n}\right)$. Let $\mathrm{D}\left(U_{n}\right)$ denote its derived subgroup: then, with $N=(n-1)(n-2) / 2$,

$$
\mathrm{D}\left(U_{n}\right)=\left\{\left.\left(\begin{array}{cccccc}
1 & 0 & a_{1} & \cdots & \cdots & a_{n-2} \\
0 & 1 & 0 & \ddots & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots & \ddots & a_{N} \\
\vdots & & & \ddots & 1 & 0 \\
0 & \cdots & \cdots & \cdots & 0 & 1
\end{array}\right) \right\rvert\, a_{1}, a_{2}, \ldots, a_{N} \in \mathbb{F}_{q}\right\}
$$

We fix a commutative ring R in which p is invertible and we set

$$
e_{n}=\frac{1}{\left|\mathrm{D}\left(U_{n}\right)\right|} \sum_{u \in \mathrm{D}\left(U_{n}\right)} u \in R \mathrm{D}\left(U_{n}\right)
$$

[^0]Then e_{n} is an idempotent of $R G_{n}$. The aim of this Note is to prove the following result (recall that an idempotent i of a ring A is called full if $A=A i A$):

Theorem 1. If p is invertible in R, then e_{n} is a full idempotent of $R G_{n}$.
Proof. First, let $R_{0}=\mathbb{Z}[1 / p]$, let ζ be a primitive p-th root of unity in \mathbb{C} and let $\hat{R}_{0}=R_{0}[\zeta]$. Let $\mathfrak{I}_{0}=R_{0} G_{n} e_{n} R_{0} G_{n}$, $\hat{\mathfrak{I}}_{0}=\hat{R}_{0} G_{n} e_{n} \hat{R}_{0} G_{n}$ and $\mathfrak{I}=R G e R G$. Since p is invertible in R, there is a unique morphism of rings $R_{0} \rightarrow R$ which extends to a morphism of rings $R_{0} G_{n} \rightarrow R G_{n}$. So if $1 \in \mathfrak{I}_{0}$, then $1 \in \mathfrak{I}$. Also, as $\left(1, \zeta, \ldots, \zeta^{p-2}\right)$ is an R_{0}-basis of \hat{R}_{0}, it is also an $R_{0} G_{n}$-basis of $\hat{R}_{0} G_{n}$. Therefore, if $1 \in \hat{R}_{0} G_{n} e_{n} \hat{R}_{0} G_{n}=\hat{R}_{0} \otimes_{R_{0}}\left(R_{0} G_{n} e R_{0} G_{n}\right)$, then $1 \in \mathfrak{I}_{0}$. Consequently, in order to prove Theorem 1, we may (and we shall) work under the following hypothesis:

Hypothesis. From now on, and until the end of this proof, we assume that $R=\mathbb{Z}[1 / p, \zeta]$.
Now, let P_{n} denote the subgroup of $\mathbf{S L}_{n}\left(\mathbb{F}_{q}\right)$ defined by

$$
P_{n}=\left\{\left.\left(\begin{array}{cc|c}
& & a_{1} \\
& M & \vdots \\
& & a_{n-1}
\end{array}\right) \right\rvert\, M \in \mathbf{S L}_{n-1}\left(\mathbb{F}_{q}\right) \quad \text { and } \quad a_{1}, \ldots, a_{n-1} \in \mathbb{F}_{q}\right\} .
$$

Then $U_{n} \subset P_{n}$. We shall prove by induction on n that e_{n} is a full idempotent of $R P_{n}$.

It is clear that Theorem 1 follows immediately from $\left(\mathcal{P}_{n}\right)$.
As $e_{1}=1$ and $e_{2}=1$, it follows that $\left(\mathcal{P}_{1}\right)$ and $\left(\mathcal{P}_{2}\right)$ hold. So assume that $n \geqslant 3$ and that (\mathcal{P}_{n-1}) holds. Let I_{n} denote the identity $n \times n$ matrix and let

$$
V_{n}=\left\{\left.\left(\begin{array}{ccc|c}
& & a_{1} \\
& \mathrm{I}_{n-1} & \vdots \\
& & a_{n-1} \\
\hline 0 & \cdots & 0 & 1
\end{array}\right) \right\rvert\, a_{1}, \ldots, a_{n-1} \in \mathbb{F}_{q}\right\}
$$

Then $V_{n} \simeq\left(\mathbb{F}_{q}^{+}\right)^{n-1}$ and $P_{n}=\mathbf{S L}_{n-1}\left(\mathbb{F}_{q}\right) \ltimes V_{n} \simeq \mathbf{S L}_{n-1}\left(\mathbb{F}_{q}\right) \ltimes\left(\mathbb{F}_{q}^{+}\right)^{n-1}$. We set $V_{n}^{\prime}=\mathrm{D}\left(U_{n}\right) \cap V_{n}$, so that $V_{n}^{\prime} \simeq\left(\mathbb{F}_{q}^{+}\right)^{n-2}$ is normalized by P_{n-1}. Then

$$
\mathrm{D}\left(U_{n}\right)=\mathrm{D}\left(U_{n-1}\right) \ltimes V_{n}^{\prime} .
$$

We now define

$$
f_{n}=\frac{1}{\left|V_{n}^{\prime}\right|} \sum_{v \in V_{n}^{\prime}} v
$$

so that

$$
e_{n}=e_{n-1} f_{n}
$$

By the induction hypothesis, there exist $g_{1}, h_{1}, \ldots, g_{l}, h_{l}$ in P_{n-1} and r_{1}, \ldots, r_{l} in R such that

$$
1=\sum_{i=1}^{l} r_{i} g_{i} e_{n-1} h_{i}
$$

Therefore, as P_{n-1} normalizes V_{n}^{\prime}, it centralizes f_{n} and so

$$
f_{n}=\left(\sum_{i=1}^{l} r_{i} g_{i} e_{n-1} h_{i}\right) f_{n}=\sum_{i=1}^{l} r_{i} g_{i} e_{n-1} f_{n} h_{i}=\sum_{i=1}^{l} r_{i} g_{i} e_{n} h_{i} .
$$

So $f_{n} \in R P_{n} e_{n} R P_{n}$.
Let $\boldsymbol{\mu}_{p}$ denote the subgroup of R^{\times}generated by ζ. If $\chi \in \operatorname{Hom}\left(V_{n}, \boldsymbol{\mu}_{p}\right)$, we define b_{χ} to be the associated primitive idempotent of $R V_{n}$:

$$
b_{\chi}=\frac{1}{\left|V_{n}\right|} \sum_{v \in V_{n}} \chi(v)^{-1} v \in R V_{n}
$$

Then, as V_{n} is an elementary abelian p-group, we get

$$
f_{n}=\sum_{\substack{\chi \in \operatorname{Hom}\left(V_{n}, \mu_{p}\right) \\ \operatorname{Res}_{V_{n}^{\prime}}^{V_{n}^{\prime}} \chi=1}} b_{\chi} .
$$

We fix a non-trivial element $\chi_{0} \in \operatorname{Hom}\left(V_{n}, \mu_{p}\right)$ whose restriction to V_{n}^{\prime} is trivial. Then

$$
b_{\chi_{0}}=b_{\chi_{0}} f_{n} \quad \text { and } \quad b_{1}=b_{1} f_{n},
$$

so b_{1} and $b_{\chi_{0}}$ belong to $R P_{n} e_{n} R P_{n}$.
But $\mathbf{S L}_{n-1}\left(\mathbb{F}_{q}\right) \subset P_{n}$ has only two orbits for its action on $\operatorname{Hom}\left(V_{n}, \boldsymbol{\mu}_{p}\right)$ (because $n-1 \geqslant 2$): the orbit of 1 and the orbit of χ_{0}. Therefore, $b_{\chi} \in R P_{n} e_{n} R P_{n}$ for all $\chi \in \operatorname{Hom}\left(V_{n}, \mu_{p}\right)$. Consequently,

$$
1=\sum_{\chi \in \operatorname{Hom}\left(V_{n}, \mu_{p}\right)} b_{\chi} \in R P_{n} e_{n} R P_{n},
$$

as desired.

Finite reductive groups. Let \mathbb{F} be an algebraic closure of \mathbb{F}_{q}, let \mathbf{G} be a connected reductive group over \mathbb{F} and let $F: \mathbf{G} \rightarrow \mathbf{G}$ be an isogeny such that some power F^{δ} is a Frobenius endomorphism relative to an \mathbb{F}_{q}-structure. We denote by \mathbf{U} an F-stable maximal unipotent subgroup of \mathbf{G} (it is the unipotent radical of an F-stable Borel subgroup). Define

$$
e=\frac{1}{\left|\mathrm{D}(\mathbf{U})^{F}\right|} \sum_{u \in \mathrm{D}(\mathbf{U})^{F}} u \in R \mathbf{G}^{F} .
$$

Theorem 2. Assume that (\mathbf{G}, F) is split of type A. Then e is a full idempotent of $R \mathbf{G}^{F}$.
Proof. If (\mathbf{G}, F) is split of type A, then we may assume that $\delta=1$. Then there is a morphism of groups $\pi: G_{n} \rightarrow \mathbf{G}^{F}$ such that the image of U_{n} is \mathbf{U}^{F}. As $\mathrm{D}\left(\mathbf{U}^{F}\right)=\mathrm{D}(\mathbf{U})^{F}$ in this case, the extension of this morphism to the group algebras $\hat{\pi}: R G_{n} \rightarrow R \mathbf{G}^{F}$ sends e_{n} to e. By Theorem 1, the two-sided ideal of $R G_{n}$ generated by e_{n} contains 1 , so the result follows by applying $\hat{\pi}$.

Corollary 3. If (\mathbf{G}, F) is split of type A , then the functors

are mutually inverse equivalences of categories. In particular, $R \mathbf{G}^{F}$ and $e R \mathbf{G}^{F} e$ are Morita equivalent, and $R \mathbf{G}^{F} e$ is a progenerator for $R \mathbf{G}^{F}$.

Proof. This follows from Theorem 2 and, for instance, [3, Example 18.30].
Example. Theorem 2 and Corollary 3 can be applied whenever $\mathbf{G}^{F}=\mathbf{G L}_{n}\left(\mathbb{F}_{q}\right), \mathbf{S L}_{n}\left(\mathbb{F}_{q}\right)$ or $\mathbf{P G L}_{n}\left(\mathbb{F}_{q}\right)$.
Comments. (1) It is natural to ask whether Theorem 2 (or Corollary 3) can be generalized to other finite reductive groups. In fact, it cannot: indeed, if for instance $R=\mathbb{C}$, then saying that e is a full idempotent of $R \mathbf{G}^{F}$ means that every irreducible character of \mathbf{G}^{F} is an irreducible component of an Harish-Chandra induced of some Gelfand-Graev character. But, if \mathbf{G} is quasi-simple and (\mathbf{G}, F) is not split of type A, then \mathbf{G}^{F} admits a unipotent character which does not belong to the principal series: this character cannot be an irreducible component of an Harish-Chandra induced of a Gelfand-Graev character.
(2) In [1], a crucial step for the proof of a special case of the geometric version of Broué's abelian defect conjecture was [1, Theorem 4.1], where R. Rouquier and the author have proved the above Theorem 2 in the case where R is the integral closure of \mathbb{Z}_{ℓ} in a sufficiently large algebraic extension of \mathbb{Q}_{ℓ} (here, ℓ is a prime number different from p). The proof was essentially based on the classification, due to Dipper [2, 4.15 and 5.23], of simple modules for G_{n} in characteristic ℓ, and especially of cuspidal ones, which involves the Deligne-Lusztig theory.

The interest of the proof given here is that it does not rely on any classification of simple modules, and is based on elementary methods: as a by-product of this elementariness, Theorem 2 and Corollary 3 are valid over any commutative ring (in which p is invertible, which is a necessary condition if one wants the idempotent e_{n} to be well-defined).

References

[1] C. Bonnafé, R. Rouquier, Coxeter orbits and modular representations, Nagoya Math. J. 183 (2006) 1-34.
[2] R. Dipper, On quotients of Hom-functors and representations of finite general linear groups II, J. Algebra 209 (1998) 199-269.
[3] T.-Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, vol. 189, Springer, 1999, xxiv+557 pp.

[^0]: E-mail address: cedric.bonnafe@math.univ-montp2.fr.
 URL: http://ens.math.univ-montp2.fr/~bonnafe.

